An Improved Ultra-Scalable Spectral Clustering Assessment with Isolation Kernel

被引:1
|
作者
Liu, Jinzhu [1 ]
Wu, Peng [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Cyber Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Intelligent Mfg, Nanjing 210094, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2024 | 2024年 / 14886卷
基金
中国国家自然科学基金;
关键词
Isolation kernel; Data clustering; Spectral clustering;
D O I
10.1007/978-981-97-5498-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering is a well-established unsupervised learning technique that can discover clusters with complex shapes in a dataset. However, applying spectral clustering to large-scale data is often prohibitive due to its high computational cost. To address this issue, the ultra-scalable spectral clustering (U-SPEC) algorithm was recently proposed. In this paper, we improve the performance of U-SPEC by incorporating a data-dependent kernel method. We introduce the Isolation Kernel into the U-SPEC framework, resulting in a novel algorithm called IK-USPEC, which can handle datasets with heterogeneous densities. We evaluate IK-USPEC on 11 real-world and synthetic datasets, and show that it outperforms existing state-of-the-art clustering algorithms.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [1] Ultra-Scalable Spectral Clustering and Ensemble Clustering
    Huang, Dong
    Wang, Chang-Dong
    Wu, Jian-Sheng
    Lai, Jian-Huang
    Kwoh, Chee-Keong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1212 - 1226
  • [2] Ultra-DPC: Ultra-scalable and Index-Free Density Peak Clustering
    Ma, Luyao
    Yang, Geping
    Chen, Xiang
    Yang, Yiyang
    Gong, Zhiguo
    Hao, Zhifeng
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 139 - 154
  • [3] UP-DPC: Ultra-scalable parallel density peak clustering
    Ma, Luyao
    Yang, Geping
    Yang, Yiyang
    Chen, Xiang
    Li, Juan
    Gong, Zhiguo
    Hao, Zhifeng
    INFORMATION SCIENCES, 2024, 660
  • [4] Granular-ball computing-based manifold clustering algorithms for ultra-scalable data
    Cheng, Dongdong
    Liu, Shushu
    Xia, Shuyin
    Wang, Guoyin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [5] Ultra-scalable ensemble clustering with simulated annealing based coot bird routing protocol for WSN
    Abraham, Robin
    Vadivel, M.
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (05)
  • [6] Scalable semi-supervised clustering by spectral kernel learning
    Baghshah, M. Soleymani
    Afsari, F.
    Shouraki, S. Bagheri
    Eslami, E.
    PATTERN RECOGNITION LETTERS, 2014, 45 : 161 - 171
  • [7] An Ultra-Scalable Blockchain Platform for Universal Asset Tokenization: Design and Implementation
    Buldas, Ahto
    Draheim, Dirk
    Gault, Mike
    Laanoja, Risto
    Nagumo, Takehiko
    Saarepera, Mart
    Shah, Syed Attique
    Simm, Joosep
    Steiner, Jamie
    Tammet, Tanel
    Truu, Ahto
    IEEE ACCESS, 2022, 10 : 77284 - 77322
  • [8] Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces
    Li, Longnan
    Lin, Yukai
    Rabbi, Kazi Fazie
    Ma, Jingcheng
    Chen, Zhuo
    Patel, Ashay
    Su, Wei
    Ma, Xiaochen
    Boyina, Kalyan
    Sett, Soumyadip
    Mondal, Debkumar
    Tomohiro, Nagano
    Hirokazu, Fujino
    Miljkovic, Nenad
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) : 43489 - 43504
  • [9] Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots
    Grech, Neville
    Fourtounis, George
    Francalanza, Adrian
    Smaragdakis, Yannis
    ISSTA'18: PROCEEDINGS OF THE 27TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, 2018, : 198 - 208
  • [10] An Improved Spectral Clustering Algorithm Based on Local Neighbors in Kernel Space
    Liu, Xinyue
    Yong, Xing
    Lin, Hongfei
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2011, 8 (04) : 1143 - 1157