Classification Using Optimal Polarimetric Parameters for Compact Polarimetric Data

被引:0
|
作者
Shah, Hemani [1 ]
Patel, Samir B. [2 ]
Patel, Vibha D. [3 ]
机构
[1] Govt Engn Coll, Gandhinagar, Gujarat, India
[2] Pandit Deendayal Energy Univ, Sch Technol, Gandhinagar, Gujarat, India
[3] Vishwakarma Govt Engn Coll, Chandkheda, Gujarat, India
来源
SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 2, ICSOFTCOMP 2023 | 2024年 / 2031卷
关键词
Compact polarimetric data; Separability Analysis; Jeffries-Matusita Distance; Polarimetric parameters;
D O I
10.1007/978-3-031-53728-8_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prior to classification, Polarimetric Synthetic Aperture Radar (PolSAR) research emphasizes the selection of polarimetric parameters for each land cover class. Polarimetric parameters are crucial to the identification of a target as each parameter has varied capability for target determination. By selecting optimal parameters, classification process can be improved. It is suggested that optimal parameters for each class be selected, to enhance classification accuracy. In this paper, a separability analysis is conducted to determine the optimal polarimetric parameters for distinguishing between various categories of land cover. In the case of hybrid polarimetric data, although only two scattering elements (RH and RV) are used, twenty polarimetric parameters are determined. Jeffries-Matusita distance is used to identify the most separable bands for each land cover type. Selected bands are then used for classification, and visual analysis reveals that the classification precision computed using selected bands is high.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [31] Using polarimetric imaging for material classification
    Zallat, J
    Graebling, P
    Takakura, Y
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 827 - 830
  • [32] Reconstruction of Full Polarimetric SAR Data from Compact Polarimetric Measurements Based on Bayesian Regularization
    Yue, Dong-Xiao
    Xu, Feng
    Jin, Ya-Qiu
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 931 - 932
  • [33] Polarimetric SAR image classification by using generalized optimization of polarimetric contrast enhancement
    Yang, Jian
    Xiong, Tao
    Peng, Ying-Ning
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (16) : 3413 - 3424
  • [34] Generation of Pseudo-fully Polarimetric Data from Dual Polarimetric Data for Land Cover Classification
    Mishra, Bhogendra
    Susaki, Junichi
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 262 - 267
  • [35] Classification and interpretation of polarimetric interferometric SAR data
    Ferro-Famil, L
    Pottier, E
    Lee, JS
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 635 - 637
  • [36] Multi frequency polarimetric sar data classification
    Ferro-Famil, Laurent
    Pottier, Eric
    2001, Springer Science and Business Media Deutschland GmbH (56): : 9 - 10
  • [37] Classification of Polarimetric Radar Data with Texture Measure
    Gupta, Divya
    Tripathi, Swati
    Rana, Shefali
    Prakash, Rishi
    2015 NATIONAL CONFERENCE ON RECENT ADVANCES IN ELECTRONICS & COMPUTER ENGINEERING (RAECE), 2015, : 176 - 179
  • [38] Multi frequency polarimetric SAR data classification
    Ferro-Famil, L
    Pottier, E
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 2001, 56 (9-10): : 510 - 522
  • [39] The Potential of Polarimetric and Compact SAR Data in Rice Identification
    Shao, Y.
    Li, K.
    Brisco, B.
    Liu, L.
    Yang, Z.
    35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35), 2014, 17
  • [40] Unsupervised classification of polarimetric SAR data using graph cut optimization
    Jaeger, M.
    Reigber, A.
    Hellwich, O.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2232 - 2235