Classification Using Optimal Polarimetric Parameters for Compact Polarimetric Data

被引:0
|
作者
Shah, Hemani [1 ]
Patel, Samir B. [2 ]
Patel, Vibha D. [3 ]
机构
[1] Govt Engn Coll, Gandhinagar, Gujarat, India
[2] Pandit Deendayal Energy Univ, Sch Technol, Gandhinagar, Gujarat, India
[3] Vishwakarma Govt Engn Coll, Chandkheda, Gujarat, India
来源
SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 2, ICSOFTCOMP 2023 | 2024年 / 2031卷
关键词
Compact polarimetric data; Separability Analysis; Jeffries-Matusita Distance; Polarimetric parameters;
D O I
10.1007/978-3-031-53728-8_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prior to classification, Polarimetric Synthetic Aperture Radar (PolSAR) research emphasizes the selection of polarimetric parameters for each land cover class. Polarimetric parameters are crucial to the identification of a target as each parameter has varied capability for target determination. By selecting optimal parameters, classification process can be improved. It is suggested that optimal parameters for each class be selected, to enhance classification accuracy. In this paper, a separability analysis is conducted to determine the optimal polarimetric parameters for distinguishing between various categories of land cover. In the case of hybrid polarimetric data, although only two scattering elements (RH and RV) are used, twenty polarimetric parameters are determined. Jeffries-Matusita distance is used to identify the most separable bands for each land cover type. Selected bands are then used for classification, and visual analysis reveals that the classification precision computed using selected bands is high.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [21] Ocean wave parameters retrieved directly from compact polarimetric SAR data
    Yu Liu
    Yijun He
    Biao Zhang
    ActaOceanologicaSinica, 2022, 41 (04) : 129 - 137
  • [22] Polarimetric SAR data classification using competitive neural networks
    Ito, Y
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (14) : 2665 - 2684
  • [23] A polarimetric SAR data classification method using neural networks
    Ito, Y
    Omatu, S
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1790 - 1792
  • [24] Autonomous UXO classification using fully polarimetric GPR data
    Youn, HS
    Chen, CC
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, VOLS 1 AND 2, 2004, : 701 - 703
  • [25] Classification of Polarimetric SAR Data Using Spectral Graph Partitioning
    Ersahin, Kaan
    Cumming, Ian G.
    Yedlin, Matthew J.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1756 - 1759
  • [26] BAYES CLASSIFICATION OF TERRAIN COVER USING NORMALIZED POLARIMETRIC DATA
    YUEH, HA
    SWARTZ, AA
    KONG, JA
    SHIN, RT
    NOVAK, LM
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1988, 93 (B12): : 15261 - 15267
  • [27] Inversion of Rice Biophysical Parameters Using Simulated Compact Polarimetric SAR C-Band Data
    Guo, Xianyu
    Li, Kun
    Shao, Yun
    Wang, Zhiyong
    Li, Hongyu
    Yang, Zhi
    Liu, Long
    Wang, Shuli
    SENSORS, 2018, 18 (07)
  • [28] Crop classification in central Navarre using polarimetric radar data
    Larranaga, A.
    Albizua, L.
    Alvarez-Mozos, J.
    REVISTA DE TELEDETECCION, 2010, (34): : 78 - 89
  • [29] Polarimetric image classification using optimal decomposition of radar polarization signatures
    Dong, YH
    Forster, B
    Ticehurst, C
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1556 - 1558
  • [30] FOREST PARAMETERS INVERSION USING POLARIMETRIC AND INTERFEROMETRIC SAR DATA
    Lavalle, M.
    Solimini, D.
    Pottier, E.
    Desnos, Y-L.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2509 - +