The distribution of Fourier coefficients of symmetric square L-functions over arithmetic progressions

被引:0
|
作者
Wang, Dan [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Shandong, Peoples R China
关键词
Fourier coefficients; Arithmetic progression; Cusp forms; EULER PRODUCTS; CLASSIFICATION; SUMS;
D O I
10.1007/s13226-024-00628-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(s, sym2 f) be the corresponding symmetric square L-function associated to f ( z), where f (z) is a primitive holomorphic cusp form of even integral weight k for the full modular group. Suppose that.sym2 f (n) is the nth normalized Fourier coefficient of L(s, sym2 f). In this paper, we use the function equation and the large sieve inequality to study the asymptotic behaviour of the sums nx n=a(mod q). j sym2 f (n), 2 j 4.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] GOLDBACH REPRESENTATIONS IN ARITHMETIC PROGRESSIONS AND ZEROS OF DIRICHLET L-FUNCTIONS
    Bhowmik, Gautami
    Halupczok, Karin
    Matsumoto, Kohji
    Suzuki, Yuta
    MATHEMATIKA, 2019, 65 (01) : 57 - 97
  • [32] Average behaviour of Fourier coefficients of j-symmetric power L-functions over some polynomials
    Sarkar, A.
    Alam, M. Shahvez
    ACTA MATHEMATICA HUNGARICA, 2024, 174 (01) : 75 - 93
  • [33] THE FOURIER COEFFICIENTS OF Θ-SERIES IN ARITHMETIC PROGRESSIONS
    Hu, Guangwei
    Jiang, Yujiao
    Lu, Guangshi
    MATHEMATIKA, 2020, 66 (01) : 39 - 55
  • [34] The second moment of symmetric square L-functions over Gaussian integers
    Balkanova, Olga
    Frolenkov, Dmitry
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (01) : 54 - 80
  • [35] Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers
    Sharma, Anubhav
    Sankaranarayanan, Ayyadurai
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)
  • [36] Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers
    Anubhav Sharma
    Ayyadurai Sankaranarayanan
    Research in Number Theory, 2022, 8
  • [37] The second moment of the symmetric square L-functions
    Iwaniec, H
    Michel, P
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2001, 26 (02) : 465 - 482
  • [38] The mean value of symmetric square L-functions
    Balkanova, Olga
    Frolenkov, Dmitry
    ALGEBRA & NUMBER THEORY, 2018, 12 (01) : 35 - 59
  • [39] Bounds for twisted symmetric square L-functions
    Munshi, Ritabrata
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 682 : 65 - 88
  • [40] Values of symmetric square L-functions at 1
    Luo, WZ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 506 : 215 - 235