Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers

被引:0
|
作者
Anubhav Sharma
Ayyadurai Sankaranarayanan
机构
[1] University of Hyderabad Central University,School of Mathematics and Statistics
来源
关键词
Cauchy–Schwarz inequality; Symmetric square ; -function; Holomorphic cusp forms; Principal Dirichlet character; 11M; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will be concerned with the average behavior of the nth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\mathrm{th}$$\end{document} normalized Fourier coefficients of symmetric square L-function (i.e., L(s,sym2f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s,sym^{2}f)$$\end{document}) over certain sequence of positive integers. Precisely, we prove an asymptotic formula for ∑a2+b2+c2+d2≤x(a,b,c,d)∈Z4λsym2f2(a2+b2+c2+d2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathop {\sum }\limits _{\begin{array}{c} a^{2}+b^{2}+c^{2}+d^{2}\le {x} \\ (a,b,c,d)\in {\mathbb {Z}}^{4} \end{array}}\uplambda ^{2}_{sym^{2}f}(a^{2}+b^{2}+c^{2}+d^{2}), \end{aligned}$$\end{document}where x≥x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ge {x_{0}}$$\end{document} (sufficiently large), and L(s,sym2f):=∑n=1∞λsym2f(n)ns.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} L(s,sym^{2}f):= \mathop {\sum }\limits _{n=1}^{\infty }\dfrac{\uplambda _{sym^{2}f}(n)}{n^{s}}. \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers
    Sharma, Anubhav
    Sankaranarayanan, Ayyadurai
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)
  • [2] Discrete mean square estimates for coefficients of symmetric power L-functions
    Sankaranarayanan, A.
    Singh, Saurabh Kumar
    Srinivas, K.
    ACTA ARITHMETICA, 2019, 190 (02) : 193 - 208
  • [3] Discrete mean square of the coefficients of triple product L-functions over certain sparse sequence
    Hua, Guodong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 180
  • [4] Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence
    A. Sharma
    A. Sankaranarayanan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1399 - 1416
  • [5] Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence
    Sharma, A.
    Sankaranarayanan, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1399 - 1416
  • [6] Coefficients of symmetric square L-functions
    Lau Yuk-Kam
    Liu JianYa
    Wu Jie
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) : 2317 - 2328
  • [7] Coefficients of symmetric square L-functions
    Yuk-Kam Lau
    JianYa Liu
    Jie Wu
    Science China Mathematics, 2010, 53 : 2317 - 2328
  • [8] Mean Square Estimates for Coefficients of Symmetric Power L-Functions
    Huixue Lao
    Acta Applicandae Mathematicae, 2010, 110 : 1127 - 1136
  • [9] Coefficients of symmetric square L-functions
    LAU Yuk-Kam
    ScienceChina(Mathematics), 2010, 53 (09) : 2317 - 2328
  • [10] Mean Square Estimates for Coefficients of Symmetric Power L-Functions
    Lao, Huixue
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1127 - 1136