Large convex sets in difference sets

被引:0
|
作者
Bhowmick, Krishnendu [1 ]
Lund, Ben [2 ]
Roche-Newton, Oliver [3 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Linz, Austria
[2] Inst Basic Sci IBS, Daejeon, South Korea
[3] Johannes Kepler Univ Linz, Inst Algebra, Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1112/mtk.12263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a construction of a convex set A subset of R$A \subset \mathbb {R}$ with cardinality n$n$ such that A-A$A-A$ contains a convex subset with cardinality Omega(n2)$\Omega (n<^>2)$. We also consider the following variant of this problem: given a convex set A$A$, what is the size of the largest matching M subset of AxA$M \subset A \times A$ such that the set {a-b:(a,b)is an element of M}$$\begin{equation*} \lbrace a-b: (a,b) \in M \rbrace \end{equation*}$$is convex? We prove that there always exists such an M$M$ with |M|>= n$|M| \geqslant \sqrt n$, and that this lower bound is best possible, up to a multiplicative constant.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Typical convex sets
    E. M. Bronshteîn
    Siberian Mathematical Journal, 2000, 41 : 13 - 18
  • [42] ON SETS WITH CONVEX SECTIONS
    MA, TW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 27 (02) : 413 - &
  • [43] Constructible Convex Sets
    Jonathan M. Borwein
    Jon D. Vanderwerff
    Set-Valued Analysis, 2004, 12 : 61 - 77
  • [44] DENSE CONVEX SETS
    KLEE, VL
    DUKE MATHEMATICAL JOURNAL, 1949, 16 (02) : 351 - 354
  • [45] Convex sets and inequalities
    Sin-Ei Takahasi
    Yasuji Takahashi
    Shizuo Miyajima
    Hiroyuki Takagi
    Journal of Inequalities and Applications, 2005
  • [46] INTERSECTION OF CONVEX SETS
    EGGLESTON, HG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 5 (NOV): : 753 - +
  • [47] ON CONVEX SETS AND MEASURES
    LARMAN, DG
    WARD, DJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 33 - &
  • [48] On Sumsets of Convex Sets
    Schoen, Tomasz
    Shkredov, Ilya D.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 793 - 798
  • [49] A SEMIGROUP OF CONVEX SETS
    REITER, H
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (07): : 902 - &
  • [50] Lectures on Convex Sets
    Popovici, Nicolae
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 121 - 122