Large convex sets in difference sets

被引:0
|
作者
Bhowmick, Krishnendu [1 ]
Lund, Ben [2 ]
Roche-Newton, Oliver [3 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Linz, Austria
[2] Inst Basic Sci IBS, Daejeon, South Korea
[3] Johannes Kepler Univ Linz, Inst Algebra, Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1112/mtk.12263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a construction of a convex set A subset of R$A \subset \mathbb {R}$ with cardinality n$n$ such that A-A$A-A$ contains a convex subset with cardinality Omega(n2)$\Omega (n<^>2)$. We also consider the following variant of this problem: given a convex set A$A$, what is the size of the largest matching M subset of AxA$M \subset A \times A$ such that the set {a-b:(a,b)is an element of M}$$\begin{equation*} \lbrace a-b: (a,b) \in M \rbrace \end{equation*}$$is convex? We prove that there always exists such an M$M$ with |M|>= n$|M| \geqslant \sqrt n$, and that this lower bound is best possible, up to a multiplicative constant.
引用
收藏
页数:16
相关论文
共 50 条