Large convex sets in difference sets

被引:0
|
作者
Bhowmick, Krishnendu [1 ]
Lund, Ben [2 ]
Roche-Newton, Oliver [3 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Linz, Austria
[2] Inst Basic Sci IBS, Daejeon, South Korea
[3] Johannes Kepler Univ Linz, Inst Algebra, Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1112/mtk.12263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a construction of a convex set A subset of R$A \subset \mathbb {R}$ with cardinality n$n$ such that A-A$A-A$ contains a convex subset with cardinality Omega(n2)$\Omega (n<^>2)$. We also consider the following variant of this problem: given a convex set A$A$, what is the size of the largest matching M subset of AxA$M \subset A \times A$ such that the set {a-b:(a,b)is an element of M}$$\begin{equation*} \lbrace a-b: (a,b) \in M \rbrace \end{equation*}$$is convex? We prove that there always exists such an M$M$ with |M|>= n$|M| \geqslant \sqrt n$, and that this lower bound is best possible, up to a multiplicative constant.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A DIFFERENCE OF CONVEX-SETS
    NURMINSKY, EA
    URYASIEV, SP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1985, (01): : 59 - 62
  • [2] Convex sets with large distortion
    Toth G.
    Journal of Geometry, 2009, 92 (1-2) : 174 - 192
  • [3] A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets
    Stefanini, Luciano
    Bede, Barnabas
    AXIOMS, 2019, 8 (02)
  • [4] On the closedness of the algebraic difference of closed convex sets
    Adly, S
    Ernst, E
    Théra, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (09): : 1219 - 1249
  • [5] TYPICAL CONVEX-SETS OF CONVEX-SETS
    SCHWARZ, T
    ZAMFIRESCU, T
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 287 - 290
  • [6] Numerical Computation for Demyanov Difference of Polyhedral Convex Sets
    Song, Chun-Ling
    Xia, Zun-Quan
    Chen, Zhen-Sheng
    OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 97 - +
  • [7] THE QUASIDIFFERENTIAL CALCULUS, SEPARATION OF CONVEX SETS AND THE DEMYANOV DIFFERENCE
    Grzybowski, J.
    Pallaschke, D.
    Urbanski, R.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2018, 14 (01): : 20 - 30
  • [8] Invariant sets computation for convex difference inclusions systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    SYSTEMS & CONTROL LETTERS, 2012, 61 (08) : 819 - 826
  • [9] A nonexistence result on difference sets, partial difference sets and divisible difference sets
    Arasu, KT
    Ma, SL
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 95 (1-2) : 67 - 73
  • [10] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88