Thermal performance evaluation of the parabolic trough solar collector using nanofluids: A case study in the desert of Algeria

被引:2
|
作者
Benrezkallah, Anfal [1 ]
Marif, Yacine [1 ]
Soudani, Mohammed Elbar [1 ]
Belhadj, Mohamed Mustapha [1 ]
Hamidatou, Taha [2 ]
Mekhloufi, Naima [1 ]
Aouachir, Ahlam [1 ]
机构
[1] Univ Kasdi Merbah, ENREZA Lab, POB 511, Ouargla 30000, Algeria
[2] Univ Djelfa, LAADI Lab, BP 3117 Djelfa, Djelfa 17000, Algeria
关键词
Parabolic trough solar collector; Nanofluids; Thermophysical properties; Thermal efficiency; Numerical simulation; HEAT-TRANSFER; NUMERICAL-SIMULATION; CONDUCTIVITY; VISCOSITY; RECEIVER;
D O I
10.1016/j.csite.2024.104797
中图分类号
O414.1 [热力学];
学科分类号
摘要
The use of Parabolic Trough Solar Collector (PTSC) is currently the best option for widespread application in industries operating at temperatures from 60 to 400 degrees C. Numerous studies have been conducted to enhance the thermal performance of the PTSC using synthetic oils as heat transfer fluids. In this study, the thermal performance of parabolic collectors was enhanced using Metallic Oxide Nanofluids (CuO, SiO2, Al2O3, TiO2) based on Therminol VP-1TM at 4 % volumetric concentration as heat-transmitting fluids. A thermal model was developed and validated through experimental and theoretical study, while the results showed good compatibility in the outlet temperature with an error rate of 0.184 % for experimental and 0.29 % for theoretical studies. Moreover, various theoretical models of the thermal properties of nanofluids were analyzed to determine the model that matches and simulates this study. The findings indicated that nanofluids enhanced the thermal efficiency of the PTSC system compared to pure Therminol VP-1TM. Specifically, CuO/Therminol VP-1TM demonstrated the most significant improvement, increasing thermal efficiency by 1.03 %. Furthermore, the results also showed that the addition of CuO, TiO2, Al2O3, and SiO2 nanoparticles led to an increase in outlet temperature by 9.57 %, 6.04 %, 5.21 %, and 3.08 %, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids
    Menbari, Amir
    Alemrajabi, Ali Akbar
    Rezaei, Amin
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 80 : 218 - 227
  • [32] THERMAL PERFORMANCE STUDY OF HELICALLY GROOVED ABSORBER TUBES FOR PARABOLIC TROUGH SOLAR COLLECTOR
    Vishwakarma, Suresh
    Debnath, Kishore
    Debnath, Biplab Kumar
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2018, VOL 1, 2018,
  • [33] Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector
    Ghasemi, Seyed Ebrahim
    Ranjbar, Ali Akbar
    APPLIED THERMAL ENGINEERING, 2017, 118 : 807 - 816
  • [34] Thermal performance of the solar parabolic trough collector at different flow rates: an experimental study
    Kumar, Devander
    Kumar, Sudhir
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2018, 39 (01) : 93 - 102
  • [35] Thermal performance analysis of novel receiver for parabolic trough solar collector
    Shinde, Tukaram U.
    Dalvi, Vishwanath H.
    Patil, Ramchandra G.
    Mathpati, Channamallikarjun S.
    V. Panse, Sudhir
    Joshi, Jyeshtharaj B.
    ENERGY, 2022, 254
  • [36] Thermal performance enhancement of a novel receiver for parabolic trough solar collector
    Justin Byiringiro
    Meriem Chaanaoui
    Belkheir Hammouti
    Byiringiro, Justin (j.byiringiro@ueuromed.org), 2025, 246 (01)
  • [37] Investigation of Thermal Performance of a Large Aperture Parabolic Trough Solar Collector
    Malan, Anish
    Kumar, K. Ravi
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [38] Studies on Thermal Performance of Closed Type Parabolic Trough Solar Collector
    Qiu, Zhong-zhu
    Li, Peng
    Gong, Shao-lin
    Wang, Ye
    Guo, Wen-wen
    He, Jia
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 812 - +
  • [39] Dynamic performance of parabolic trough solar collector
    Jie, Ji
    Han Chongwei
    Wei, He
    Gang, Pei
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 750 - 754
  • [40] Performance simulation of a parabolic trough solar collector
    Huang, Weidong
    Hu, Peng
    Chen, Zeshao
    SOLAR ENERGY, 2012, 86 (02) : 746 - 755