Thermal performance evaluation of the parabolic trough solar collector using nanofluids: A case study in the desert of Algeria

被引:2
|
作者
Benrezkallah, Anfal [1 ]
Marif, Yacine [1 ]
Soudani, Mohammed Elbar [1 ]
Belhadj, Mohamed Mustapha [1 ]
Hamidatou, Taha [2 ]
Mekhloufi, Naima [1 ]
Aouachir, Ahlam [1 ]
机构
[1] Univ Kasdi Merbah, ENREZA Lab, POB 511, Ouargla 30000, Algeria
[2] Univ Djelfa, LAADI Lab, BP 3117 Djelfa, Djelfa 17000, Algeria
关键词
Parabolic trough solar collector; Nanofluids; Thermophysical properties; Thermal efficiency; Numerical simulation; HEAT-TRANSFER; NUMERICAL-SIMULATION; CONDUCTIVITY; VISCOSITY; RECEIVER;
D O I
10.1016/j.csite.2024.104797
中图分类号
O414.1 [热力学];
学科分类号
摘要
The use of Parabolic Trough Solar Collector (PTSC) is currently the best option for widespread application in industries operating at temperatures from 60 to 400 degrees C. Numerous studies have been conducted to enhance the thermal performance of the PTSC using synthetic oils as heat transfer fluids. In this study, the thermal performance of parabolic collectors was enhanced using Metallic Oxide Nanofluids (CuO, SiO2, Al2O3, TiO2) based on Therminol VP-1TM at 4 % volumetric concentration as heat-transmitting fluids. A thermal model was developed and validated through experimental and theoretical study, while the results showed good compatibility in the outlet temperature with an error rate of 0.184 % for experimental and 0.29 % for theoretical studies. Moreover, various theoretical models of the thermal properties of nanofluids were analyzed to determine the model that matches and simulates this study. The findings indicated that nanofluids enhanced the thermal efficiency of the PTSC system compared to pure Therminol VP-1TM. Specifically, CuO/Therminol VP-1TM demonstrated the most significant improvement, increasing thermal efficiency by 1.03 %. Furthermore, the results also showed that the addition of CuO, TiO2, Al2O3, and SiO2 nanoparticles led to an increase in outlet temperature by 9.57 %, 6.04 %, 5.21 %, and 3.08 %, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Comparative investigations on thermal performance assessment of a linear parabolic trough solar collector using various nanofluids and incident angles
    Kumar, Abhinav
    ENERGY, 2025, 317
  • [22] Effect of mono/hybrid nanofluids and passive techniques on thermal performance of parabolic trough solar collector: A review
    Priyanka
    Kumar, Sunil
    Kumar, Anil
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 1686 - 1709
  • [23] Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region
    Marif, Yacine
    Benmoussa, Hocine
    Bouguettaia, Hamza
    Belhadj, Mohamed M.
    Zerrouki, Moussa
    ENERGY CONVERSION AND MANAGEMENT, 2014, 85 : 521 - 529
  • [24] Evaluating the effect of using nanofluids on the parabolic trough collector's performance
    Moosavian, Seyed Farhan
    Hajinezhad, Ahmad
    Fattahi, Reza
    Shahee, Arash
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (10) : 3512 - 3535
  • [25] Cupric oxide nanofluid influenced parabolic trough solar collector: thermal performance evaluation
    Padmavathi, K. R.
    Prabagaran, Subramaniam
    Rathinavelu, Venkatesh
    Mohankumar, Subramanian
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 2811 - 2827
  • [26] Numerical study on thermal performance of parabolic trough collector
    Xiong, Ya-Xuan
    Wu, Yu-Ting
    Ma, Chong-Fang
    Zhang, Ye-Qiang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (03): : 495 - 498
  • [27] Experimental Study on the Thermal Performance and Heat Transfer Characteristics of Solar Parabolic Trough Collector Using Al2O3 Nanofluids
    Subramani, J.
    Nagarajan, P. K.
    Wongwises, Somchai
    El-Agouz, S. A.
    Sathyamurthy, Ravishankar
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2018, 37 (03) : 1149 - 1159
  • [28] Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids
    Qin, Caiyan
    Kim, Joong Bae
    Lee, Bong Jae
    RENEWABLE ENERGY, 2019, 143 : 24 - 33
  • [29] Performance analysis of direct absorption-based parabolic trough solar collector using hybrid nanofluids
    Khalil, Atisham
    Amjad, Muhammad
    Noor, Fahad
    Hussain, Amjad
    Nawaz, Saad
    Bandarra Filho, Enio P.
    Du, Xiaoze
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [30] Performance analysis of direct absorption-based parabolic trough solar collector using hybrid nanofluids
    Atisham Khalil
    Muhammad Amjad
    Fahad Noor
    Amjad Hussain
    Saad Nawaz
    Enio P. Bandarra Filho
    Xiaoze Du
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42