Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth

被引:2
|
作者
Huang, Hao [1 ]
Li, Ziyu [1 ]
Chen, Zhijia [1 ]
Li, Denggao [1 ]
Shi, Hongxi [1 ]
Zhu, Keqi [1 ]
Wang, Chenyu [1 ]
Lu, Zhangbo [1 ]
Huang, Shihua [1 ]
Chi, Dan [1 ]
机构
[1] Zhejiang Normal Univ, Prov Key Lab Solid State Optoelect Devices, Jinhua 321004, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1039/d4qm00474d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N2. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.
引用
收藏
页码:3017 / 3027
页数:11
相关论文
共 50 条
  • [31] Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction
    Liu, Gengling
    Zhong, Yang
    Mao, Houdong
    Yang, Jia
    Dai, Runying
    Hu, Xiaotian
    Xing, Zhi
    Sheng, Wangping
    Tan, Licheng
    Chen, Yiwang
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [32] Hexachlorotriphosphazene-assisted buried interface passivation for stable and efficient wide-bandgap perovskite solar cells
    Wang, Ruyue
    Li, Minghua
    Ma, Zongwen
    He, Zhangwei
    Dong, Yiman
    Zhang, Yuling
    Xu, Zhiyang
    Su, Gangfeng
    Tan, Zhan'ao
    CHEMICAL COMMUNICATIONS, 2023, 59 (41) : 6255 - 6258
  • [33] Potassium-Induced Phase Stability Enables Stable and Efficient Wide-Bandgap Perovskite Solar Cells
    Wang, Lipeng
    Wang, Gaoxiang
    Yan, Zheng
    Qiu, Jianhang
    Jia, Chunxu
    Zhang, Weimin
    Zhen, Chao
    Xu, Chuan
    Tai, Kaiping
    Jiang, Xin
    Yang, Shihe
    SOLAR RRL, 2020, 4 (07):
  • [34] Realizing mechanical stable and efficient wide-bandgap flexible perovskite solar cells by toughening the buried interface
    Cao, Jianlei
    Chen, Weijie
    Zhao, Chenli
    Xu, Jiacheng
    Zheng, Jialei
    Kang, Shuaiqing
    Zhu, Juan
    Zhang, Jiandong
    Li, Yaowen
    SCIENCE CHINA-MATERIALS, 2025,
  • [35] Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells
    Guo, Xiao
    Jia, Zhenrong
    Liu, Shunchang
    Guo, Renjun
    Jiang, Fangyuan
    Shi, Yangwei
    Dong, Zijing
    Luo, Ran
    Wang, Yu-Duan
    Shi, Zhuojie
    Li, Jia
    Chen, Jinxi
    Lee, Ling Kai
    Mueller-Buschbaum, Peter
    Ginger, David S.
    Paterson, David J.
    Hou, Yi
    JOULE, 2024, 8 (09) : 2554 - 2569
  • [36] Recent Advances in Wide-Bandgap Perovskite Solar Cells
    Mei, Jianjun
    Yan, Feng
    ADVANCED MATERIALS, 2025,
  • [37] Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells
    Du, Shuxian
    Yang, Jing
    Qu, Shujie
    Lan, Zhineng
    Sun, Tiange
    Dong, Yixin
    Shang, Ziya
    Liu, Dongxue
    Yang, Yingying
    Yan, Luyao
    Wang, Xinxin
    Huang, Hao
    Ji, Jun
    Cui, Peng
    Li, Yingfeng
    Li, Meicheng
    MATERIALS, 2022, 15 (09)
  • [38] Synergetic Regulation of Oriented Crystallization and Interfacial Passivation Enables 19.1% Efficient Wide-Bandgap Perovskite Solar Cells
    Yu, Yue
    Liu, Rui
    Liu, Chang
    Shi, Xiao-Lei
    Yu, Hua
    Chen, Zhi-Gang
    ADVANCED ENERGY MATERIALS, 2022, 12 (33)
  • [39] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [40] Ion Compensation of Buried Interface Enables Highly Efficient and Stable Inverted MA-Free Perovskite Solar Cells
    Chen, Yu
    Shen, Yang
    Tang, Weijian
    Wu, Yihui
    Luo, Weidong
    Yuan, Ningyi
    Ding, Jianning
    Zhang, Shengli
    Zhang, Wen-Hua
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)