Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth

被引:2
|
作者
Huang, Hao [1 ]
Li, Ziyu [1 ]
Chen, Zhijia [1 ]
Li, Denggao [1 ]
Shi, Hongxi [1 ]
Zhu, Keqi [1 ]
Wang, Chenyu [1 ]
Lu, Zhangbo [1 ]
Huang, Shihua [1 ]
Chi, Dan [1 ]
机构
[1] Zhejiang Normal Univ, Prov Key Lab Solid State Optoelect Devices, Jinhua 321004, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1039/d4qm00474d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N2. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.
引用
收藏
页码:3017 / 3027
页数:11
相关论文
共 50 条
  • [21] Homogeneous crystallization of MA-free, wide-bandgap perovskite films via self-assembled monolayer capping for laminated silicon/perovskite tandem solar cells
    Zhu, Weidong
    Yang, Mei
    Han, Tianjiao
    Wang, Yiru
    Luo, Xin
    Chai, Wenming
    Xi, He
    Zhou, Long
    Chen, Dazheng
    Zhang, Jincheng
    Zhang, Chunfu
    Hao, Yue
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [22] Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells
    Ma, Xiaohui
    Yang, Liqun
    Shang, Xueni
    Li, Mengjia
    Gao, Deyu
    Wu, Cuncun
    Zheng, Shijian
    Zhang, Boxue
    Chen, Jiangzhao
    Chen, Cong
    Song, Hongwei
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [23] Self-Assembled Amphiphilic Monolayer for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Liu, Lu
    Yang, Yang
    Du, Minyong
    Cao, Yuexian
    Ren, Xiaodong
    Zhang, Lu
    Wang, Hui
    Zhao, Shuai
    Wang, Kai
    Liu, Shengzhong
    ADVANCED ENERGY MATERIALS, 2023, 13 (04)
  • [24] Molecular Bridge in Wide-Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells
    Ye, Tianshi
    Qiao, Liang
    Wang, Tao
    Wang, Pengshuai
    Zhang, Lin
    Sun, Ruitian
    Kong, Weiyu
    Xu, Menglei
    Yan, Xunlei
    Yang, Jie
    Zhang, Xinyu
    Yang, Xudong
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [25] Fluorinated Pyrimidine Bridged Buried Interface for Stable and Efficient Wide-Bandgap Perovskite Solar Cells
    Zhu, Yong
    Xie, Zhewen
    Chang, Xiong
    Wang, Guohua
    Hong, Zhanghua
    Zhou, Mengni
    Li, Kunpeng
    Li, Zhishan
    Wang, Hua
    Zhu, Xing
    Zhu, Tao
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (11)
  • [26] Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells
    Sun, Qing
    Zong, Beibei
    Meng, Xiangxin
    Shen, Bo
    Li, Xu
    Kang, Bonan
    Silva, S. Ravi P.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6702 - 6713
  • [27] Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells
    Chen, Cong
    Liang, Jiwei
    Zhang, Junjun
    Liu, Xinxing
    Yin, Xinxing
    Cui, Hongsen
    Wang, Haibing
    Wang, Chen
    Li, Zaifang
    Gong, Junbo
    Lin, Qianqian
    Ke, Weijun
    Tao, Chen
    Da, Bo
    Ding, Zejun
    Xiao, Xudong
    Fang, Guojia
    NANO ENERGY, 2021, 90
  • [28] Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells
    Yang, Guang
    Ni, Zhenyi
    Yu, Zhengshan J.
    Larson, Bryon W.
    Yu, Zhenhua
    Chen, Bo
    Alasfour, Abdulwahab
    Xiao, Xun
    Luther, Joseph M.
    Holman, Zachary C.
    Huang, Jinsong
    NATURE PHOTONICS, 2022, 16 (08) : 588 - +
  • [29] Delaying crystallization and anchoring the grain boundaries defects via π-π stacked molecules for efficient and stable wide-bandgap perovskite solar cells
    Shen, Jinliang
    Li, Na
    Wang, Yuhang
    Ge, Xiang
    Tao, Junlei
    Yin, Song
    Ning, Xingkun
    He, Tingwei
    Fu, Guangsheng
    Yang, Shaopeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [30] Dual Interfacial Modification Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Liu, Le
    Liu, Dali
    Sun, Rui
    Zhou, Donglei
    Wu, Yanjie
    Zhuang, Xinmeng
    Liu, Shuainan
    Bi, Wenbo
    Wang, Nan
    Zi, Lu
    Zhang, Boxue
    Shi, Zhichong
    Song, Hongwei
    SOLAR RRL, 2021, 5 (03):