Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth

被引:2
|
作者
Huang, Hao [1 ]
Li, Ziyu [1 ]
Chen, Zhijia [1 ]
Li, Denggao [1 ]
Shi, Hongxi [1 ]
Zhu, Keqi [1 ]
Wang, Chenyu [1 ]
Lu, Zhangbo [1 ]
Huang, Shihua [1 ]
Chi, Dan [1 ]
机构
[1] Zhejiang Normal Univ, Prov Key Lab Solid State Optoelect Devices, Jinhua 321004, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1039/d4qm00474d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N2. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.
引用
收藏
页码:3017 / 3027
页数:11
相关论文
共 50 条
  • [1] Collaborative interfacial modification and surficial passivation for high-efficiency MA-free wide-bandgap perovskite solar cells
    Ou, Yali
    Huang, Hao
    Shi, Hongxi
    Li, Ziyu
    Chen, Zhijia
    Mateen, Muhammad
    Lu, Zhangbo
    Chi, Dan
    Huang, Shihua
    CHEMICAL ENGINEERING JOURNAL, 2023, 469
  • [2] Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Zhao, Xiaoni
    Cao, Jiali
    Nie, Ting
    Liu, Shengzhong
    Fang, Zhimin
    SOLAR RRL, 2024, 8 (20):
  • [3] Trimethyl Ammonium-Assisted Interfacial Modification for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Yi, Fangxuan
    Guo, Qiyao
    He, Wei
    Tang, Qunwei
    Duan, Jialong
    ENERGY TECHNOLOGY, 2024, 12 (01)
  • [4] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [5] A comprehensive optimization of highly efficient MA-Free wide-bandgap perovskites for 4-T Perovskite/Silicon tandem solar cells
    Huang, Yu-Ching
    Huang, Sheng-Wen
    Li, Chia-Feng
    Huang, Shih-Han
    Tsai, Feng-Yu
    Su, Wei-Fang
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [6] Defect passivation engineering for achieving 4.29% light utilization efficiency MA-free wide-bandgap semi-transparent perovskite solar cells
    Shi, Hongxi
    Xie, Tianye
    Li, Denggao
    Li, Ziyu
    Chen, Zhijia
    Wang, Chenyu
    Huang, Shihua
    Lu, Zhangbo
    Zheng, Fan
    Chi, Dan
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [7] Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Shen, Xinyi
    Gallant, Benjamin M.
    Holzhey, Philippe
    Smith, Joel A.
    Elmestekawy, Karim A.
    Yuan, Zhongcheng
    Rathnayake, P. V. G. M.
    Bernardi, Stefano
    Dasgupta, Akash
    Kasparavicius, Ernestas
    Malinauskas, Tadas
    Caprioglio, Pietro
    Shargaieva, Oleksandra
    Lin, Yen-Hung
    McCarthy, Melissa M.
    Unger, Eva
    Getautis, Vytautas
    Widmer-Cooper, Asaph
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [8] Tailoring the Grain Boundaries of Wide-Bandgap Perovskite Solar Cells by Molecular Engineering
    Emshadi, Khalid
    Ghimire, Nabin
    Gurung, Ashim
    Bahrami, Behzad
    Pathak, Rajesh
    Bobba, Raja Sekhar
    Lamsal, Buddhi Sagar
    Rahman, Sheikh Ifatur
    Chowdhury, Ashraful Haider
    Chen, Ke
    Laskar, Md Ashiqur Rahman
    Luo, Wenqin
    Elbohy, Hytham
    Qiao, Quinn
    SOLAR RRL, 2020, 4 (12)
  • [9] Multifunctional Buffer Layer Engineering for Efficient and Stable Wide-Bandgap Perovskite and Perovskite/Silicon Tandem Solar Cells
    Ji, Xiaofei
    Ding, Yian
    Bi, Leyu
    Yang, Xin
    Wang, Jiarong
    Wang, Xiaoting
    Liu, Yuanzhong
    Yan, Yiran
    Zhu, Xiangrong
    Huang, Jin
    Yang, Liyou
    Fu, Qiang
    Jen, Alex K. -Y.
    Lu, Linfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (32)
  • [10] Grain Regrowth and Bifacial Passivation for High-Efficiency Wide-Bandgap Perovskite Solar Cells
    Liu, Zhou
    Zhu, Changhuai
    Luo, Haowen
    Kong, Wenchi
    Luo, Xin
    Wu, Jinlong
    Ding, Changzeng
    Chen, Yiyao
    Wang, Yurui
    Wen, Jin
    Gao, Yuan
    Tan, Hairen
    ADVANCED ENERGY MATERIALS, 2023, 13 (02)