Introducing a nano-scale surface morphology parameter affecting fracture properties of CNT nanocomposites

被引:0
|
作者
Fard, Masoud Yekani [1 ]
Norkus, Tyler [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
Interphase; Nanoparticle; Fracture; Weibull distribution; Atomic force microscopy; CARBON; REINFORCEMENT; DELAMINATION; SHEAR;
D O I
10.1016/j.coco.2024.101931
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon Nanotube (CNT) particles and membranes improve interlaminar fracture toughness of nanocomposites. The novelty of this study is to introduce the effect of a new nanoscale parameter - CNT network (bundle) size to interphase thickness ratio - on modes I and II interlaminar fracture toughness of CNT Polymer Nanocomposites (PNCs). This investigation includes the stochastic distribution function of CNT bundle size, interphase thickness, and modes I and II fracture toughness of PNCs based on an extensive experimental study at the nanoand macroscales. The Atomic Force Microscopy PeakForce Quantitative Nanomechanics Mapping technique was used to collect 500 datasets for a low-weight percentage of CNT PNC and 180 datasets for a high-weight percentage of CNT PNC. Each dataset included CNT bundle size and interphase thickness at the nanoscale. Double cantilever beam and end-notched flexure experiments were conducted to collect 600 modes I and II fracture toughness data. Two-, three-, and four-parameter Weibull models were used to simulate the nanoand macro-scale material properties of CNT PNCs. Results indicate that (i) a lower CNT bundle size to interphase thickness ratio improves fracture toughness, and (ii) a four-parameter Weibull model is the most efficient model for simulated data.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Nano-scale surface cues and in vitro neuronal growth
    Nam, Yoonkey
    Jang, Min Jee
    Kang, Kyungtae
    Choi, Insung S.
    NANOSYSTEMS IN ENGINEERING AND MEDICINE, 2012, 8548
  • [42] A Scanning Probe Microscope for Surface Measurement in Nano-Scale
    Yu, Huijuan
    Huang, Qiangxian
    Zhang, Rui
    Li, Zhibo
    Cheng, Zhenying
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (06) : 6011 - 6017
  • [43] Surface Effect in Nano-Scale Fretting Contact Problems
    Xiao, Sha
    Peng, Zhilong
    Wu, Hui
    Yao, Yin
    Chen, Shaohua
    Journal of Applied Mechanics, Transactions ASME, 2023, 90 (11):
  • [44] Optical Wave Engineering for nano-scale surface metrology
    Shamir, J
    Spektor, B
    Parkhomenko, Y
    WAVE-OPTICAL SYSTEMS ENGINEERING II, 2003, 5182 : 197 - 205
  • [45] Nano-scale coating wear measurement by introducing Raman-sensing underlayer
    Nan Xu
    Chun Wang
    Liuquan Yang
    Eric Kumi Barimah
    Gin Jose
    Anne Neville
    Ardian Morina
    JournalofMaterialsScience&Technology, 2022, 96 (01) : 285 - 294
  • [46] Nano-scale coating wear measurement by introducing Raman-sensing underlayer
    Xu, Nan
    Wang, Chun
    Yang, Liuquan
    Barimah, Eric Kumi
    Jose, Gin
    Neville, Anne
    Morina, Ardian
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 96 (96): : 285 - 294
  • [47] Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect
    Wang, K. F.
    Wang, B. L.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 56 : 12 - 18
  • [48] Gripless nanotension test for determination of nano-scale properties
    Yang, Dong-Yol
    Lim, Tae Woo
    Son, Yong
    Barlat, Frederic
    Yoon, Jeong Whan
    INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (10) : 1527 - 1536
  • [49] Nano-scale properties of defects in compound semiconductor surfaces
    Inst. fur Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
    Surf Sci Rep, 4 (121-303):
  • [50] The synthesis and binding properties of nano-scale hydrophobic pockets
    Gibb, CLD
    Xi, HP
    Politzer, PA
    Concha, M
    Gibb, BC
    TETRAHEDRON, 2002, 58 (04) : 673 - 681