Introducing a nano-scale surface morphology parameter affecting fracture properties of CNT nanocomposites

被引:0
|
作者
Fard, Masoud Yekani [1 ]
Norkus, Tyler [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
Interphase; Nanoparticle; Fracture; Weibull distribution; Atomic force microscopy; CARBON; REINFORCEMENT; DELAMINATION; SHEAR;
D O I
10.1016/j.coco.2024.101931
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon Nanotube (CNT) particles and membranes improve interlaminar fracture toughness of nanocomposites. The novelty of this study is to introduce the effect of a new nanoscale parameter - CNT network (bundle) size to interphase thickness ratio - on modes I and II interlaminar fracture toughness of CNT Polymer Nanocomposites (PNCs). This investigation includes the stochastic distribution function of CNT bundle size, interphase thickness, and modes I and II fracture toughness of PNCs based on an extensive experimental study at the nanoand macroscales. The Atomic Force Microscopy PeakForce Quantitative Nanomechanics Mapping technique was used to collect 500 datasets for a low-weight percentage of CNT PNC and 180 datasets for a high-weight percentage of CNT PNC. Each dataset included CNT bundle size and interphase thickness at the nanoscale. Double cantilever beam and end-notched flexure experiments were conducted to collect 600 modes I and II fracture toughness data. Two-, three-, and four-parameter Weibull models were used to simulate the nanoand macro-scale material properties of CNT PNCs. Results indicate that (i) a lower CNT bundle size to interphase thickness ratio improves fracture toughness, and (ii) a four-parameter Weibull model is the most efficient model for simulated data.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II
    Wang, Hua-Jie
    Sun, Yuan-Yuan
    Cao, Ying
    Wang, Kui
    Yang, Lin
    Zhang, Yi-Dong
    Zheng, Zhi
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (05)
  • [22] Thin surface coatings with nano-scale particles - tribological properties for various conditions
    Pauschitz, A.
    Franek, F.
    Barabolia, A.
    Tribologie und Schmierungstechnik, 2000, 47 (02): : 18 - 22
  • [23] Nano-scale viscoelastic properties of polymer materials
    Asif, SAS
    Pethica, JB
    THIN-FILMS - STRESSES AND MECHANICAL PROPERTIES VII, 1998, 505 : 103 - 108
  • [24] Tensile properties of copper with nano-scale twins
    Shen, YF
    Lu, L
    Lu, QH
    Jin, ZH
    Lu, K
    SCRIPTA MATERIALIA, 2005, 52 (10) : 989 - 994
  • [25] Water properties under nano-scale confinement
    Knight, Andrew W.
    Kalugin, Nikolai G.
    Coker, Eric
    Ilgen, Anastasia G.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [26] Transport properties of multilayers with nano-scale structures
    Department of Physics, Tokyo Metropol. Univ., H., Tokyo, Japan
    不详
    不详
    J Magn Magn Mater, (213-215):
  • [27] Water properties under nano-scale confinement
    Andrew W. Knight
    Nikolai G. Kalugin
    Eric Coker
    Anastasia G. Ilgen
    Scientific Reports, 9
  • [28] A computational investigation of applicability of nonlinear fracture mechanics in nano-scale fracture of graphene
    Mousavi, Babak
    Sadeghirad, Alireza
    Lotfi, Vahid
    MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [29] Transport properties of multilayers with nano-scale structures
    Aoki, YK
    Sato, H
    Kobayashi, Y
    Sugawara, H
    Aoki, Y
    Ono, T
    Shigeto, K
    Shinjo, T
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 198-99 : 213 - 215
  • [30] Nano-scale visualization of deformation and fracture phenomena in soft materials
    Jinnai, Hiroshi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256