Introducing a nano-scale surface morphology parameter affecting fracture properties of CNT nanocomposites

被引:0
|
作者
Fard, Masoud Yekani [1 ]
Norkus, Tyler [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
Interphase; Nanoparticle; Fracture; Weibull distribution; Atomic force microscopy; CARBON; REINFORCEMENT; DELAMINATION; SHEAR;
D O I
10.1016/j.coco.2024.101931
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon Nanotube (CNT) particles and membranes improve interlaminar fracture toughness of nanocomposites. The novelty of this study is to introduce the effect of a new nanoscale parameter - CNT network (bundle) size to interphase thickness ratio - on modes I and II interlaminar fracture toughness of CNT Polymer Nanocomposites (PNCs). This investigation includes the stochastic distribution function of CNT bundle size, interphase thickness, and modes I and II fracture toughness of PNCs based on an extensive experimental study at the nanoand macroscales. The Atomic Force Microscopy PeakForce Quantitative Nanomechanics Mapping technique was used to collect 500 datasets for a low-weight percentage of CNT PNC and 180 datasets for a high-weight percentage of CNT PNC. Each dataset included CNT bundle size and interphase thickness at the nanoscale. Double cantilever beam and end-notched flexure experiments were conducted to collect 600 modes I and II fracture toughness data. Two-, three-, and four-parameter Weibull models were used to simulate the nanoand macro-scale material properties of CNT PNCs. Results indicate that (i) a lower CNT bundle size to interphase thickness ratio improves fracture toughness, and (ii) a four-parameter Weibull model is the most efficient model for simulated data.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Effect of nano-scale Cu particles on the electrical property of CNT/polymer nanocomposites
    Wang, Yang
    Wang, Xuhao
    Cao, Xinhui
    Gong, Shen
    Xie, Zuoyu
    Li, Teng
    Wu, Chanyuan
    Zhu, Zhenghong
    Li, Zhou
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 143
  • [2] Parameter determination for nano-scale modeling
    Thomas, M
    Pacha, C
    Goser, K
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1999, 1625 : 421 - 426
  • [3] NANO-SCALE SURFACE COATINGS
    Coulson, Stephen
    Evans, Delwyn
    NANOTECHNOLOGY 2011: ADVANCED MATERIALS, CNTS, PARTICLES, FILMS AND COMPOSITES, NSTI-NANOTECH 2011, VOL 1, 2011, : 407 - 410
  • [4] Nano-Scale Surface Morphology Evolution of Cu/Ti Thin Films
    Lin, Qi-Jing
    Yang, Shu-Ming
    Jing, Weixuan
    Jiang, Zhuang-de
    Wang, Chen-Ying
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (08) : 5665 - 5670
  • [5] Nano-scale characterization of fracture surfaces of blended epoxy resins related to fracture properties
    Haris, Andi
    Adachi, Tadaharu
    Araki, Wakako
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 496 (1-2): : 337 - 344
  • [6] Introducing nano-scale quantitative polymerase chain reaction
    Dyrstad, Sissel E.
    Tusubira, Deusdedit
    Knappskog, Stian
    Tronstad, Karl J.
    Rosland, Gro, V
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 506 (04) : 923 - 926
  • [7] Dielectric and nano-scale free volume properties of polyaniline/polyvinyl alcohol nanocomposites
    El-Gamal, S.
    Ismail, A. M.
    El-Mallawany, R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (10) : 7544 - 7553
  • [8] Dielectric and nano-scale free volume properties of polyaniline/polyvinyl alcohol nanocomposites
    S. El-Gamal
    A. M. Ismail
    R. El-Mallawany
    Journal of Materials Science: Materials in Electronics, 2015, 26 : 7544 - 7553
  • [9] Fracture and Failure in Micro- and Nano-Scale
    Charitidis, Costas A.
    ENGINEERING AGAINST FRACTURE, 2009, : 347 - 355
  • [10] Nano-scale Observation of Si Trench Sidewall Surface Morphology by AFM Technology
    Hiruta, Reiko
    Kuribayashi, Hitoshi
    Shimizu, Ryosuke
    NANOSCALE PHENOMENA IN FUNCTIONAL MATERIALS BY SCANNING PROBE MICROSCOPY, 2008, 1025