Explainable Prediction of Machine-Tool Breakdowns Based on Combination of Natural Language Processing and Classifiers

被引:0
|
作者
Ben Ayed, Maha [1 ,3 ]
Soualhi, Moncef [1 ]
Mairot, Nicolas [2 ]
Giampiccolo, Sylvain [2 ]
Ketata, Raouf [3 ]
Zerhouni, Noureddine [1 ]
机构
[1] Univ Franche Comte, CNRS, Femto St, Supmicrotech ENSMM, 24 Rue Alain Savary, F-25000 Besanon, France
[2] SCODER, 1 Rue Foret ZA Oree Bois, F-25480 Pirey, France
[3] Natl Inst Appl Sci & Technol Tunis, Northern Urban Ctr, Tunis 1080, Tunisia
关键词
Prognostics and health management; Natural language processing; Data quality; Feature encoding; Machine learning; Machine-tools;
D O I
10.1007/978-3-031-47718-8_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prognostics and Health Management (PHM) process has been developed to enhance predictive maintenance (PM) policies and decision support (DS). One of the PHM modules is fault diagnostics, it allows identifying and predicting future faults. Among diagnostic techniques, one can find Natural Language Processing (NLP) that can be used to exploit textual monitoring data such as logging data for fault prediction. However, there exists some unstructured texts that reduce the data quality and provide an un-explainable prediction of faults. To remedy this situation, this paper proposes a NLP methodology for system breakdown prediction. This methodology starts by cleaning textual data. Then, cleaned data and their labels, which represent the breakdown origin, are injected into feature encoding models. These two previous steps address special and redundant characters and non-standard spelling terms. Thus, they allow classifier models to learn mapping input texts to their corresponding labels without confusion for the fault prediction, making these predictions explainable. The proposed methodology is applied to real logging data carried out from a machine tool of a French company SCODER. The machine tool generates six failure labels that classifiers learn to predict. The prediction accuracy obtained by the proposed methodology, compared to existing methods, is promising and can be useful for a failure prognostics.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 50 条
  • [31] Natural Language Processing in Medicine: a machine-based trend analysis
    Masoumi, Safoora
    Amirkhani, Hossein
    Saedeghian, Najmeh
    Shahraz, Saeid
    QUALITY OF LIFE RESEARCH, 2021, 30 (SUPPL 1) : S174 - S175
  • [32] Machine Learning and Natural Language Processing for Prediction of Human Factors in Aviation Incident Reports
    Madeira, Tomas
    Melicio, Rui
    Valerio, Duarte
    Santos, Luis
    AEROSPACE, 2021, 8 (02) : 1 - 18
  • [33] Hybrid explainable image caption generation using image processing and natural language processing
    Mishra, Atul
    Agrawal, Anubhav
    Bhasker, Shailendra
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (10) : 4874 - 4884
  • [34] RESEARCH CONCERNING MACHINE-TOOL ACCURACY BASED ON DYNAMICS BEHAVIOUR
    Ispas, Constantin
    Anania, Florea Dorel
    Zapciu, Miron
    ANNALS OF DAAAM FOR 2008 & PROCEEDINGS OF THE 19TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON NEXT GENERATION OF INTELLIGENT SYSTEMS AND SOLUTIONS, 2008, : 645 - 646
  • [35] USE OF NATURAL-GAS FOR CHEMICOTHERMAL TREATMENT OF TOOLS AND MACHINE-TOOL PARTS
    KOZLOV, VL
    RUKINA, IM
    METAL SCIENCE AND HEAT TREATMENT, 1983, 25 (5-6) : 351 - 352
  • [36] IN-PROCESS ANALYSIS OF MACHINE-TOOL STRUCTURE DYNAMICS AND PREDICTION OF MACHINING CHATTER
    MORIWAKI, T
    IWATA, K
    JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1976, 98 (01): : 301 - 305
  • [38] On Application of Natural Language Processing in Machine Translation
    Zong, Zhaorong
    Hong, Changchun
    2018 3RD INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE), 2018, : 506 - 510
  • [39] Handbook of Natural Language Processing and Machine Translation
    Rossi, Kimmo
    MACHINE TRANSLATION, 2013, 27 (01) : 73 - 76
  • [40] Machine learning in statistical natural language processing
    Mochihashi, Daichi
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2015, 69 (02): : 131 - 135