Explainable Prediction of Machine-Tool Breakdowns Based on Combination of Natural Language Processing and Classifiers

被引:0
|
作者
Ben Ayed, Maha [1 ,3 ]
Soualhi, Moncef [1 ]
Mairot, Nicolas [2 ]
Giampiccolo, Sylvain [2 ]
Ketata, Raouf [3 ]
Zerhouni, Noureddine [1 ]
机构
[1] Univ Franche Comte, CNRS, Femto St, Supmicrotech ENSMM, 24 Rue Alain Savary, F-25000 Besanon, France
[2] SCODER, 1 Rue Foret ZA Oree Bois, F-25480 Pirey, France
[3] Natl Inst Appl Sci & Technol Tunis, Northern Urban Ctr, Tunis 1080, Tunisia
关键词
Prognostics and health management; Natural language processing; Data quality; Feature encoding; Machine learning; Machine-tools;
D O I
10.1007/978-3-031-47718-8_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prognostics and Health Management (PHM) process has been developed to enhance predictive maintenance (PM) policies and decision support (DS). One of the PHM modules is fault diagnostics, it allows identifying and predicting future faults. Among diagnostic techniques, one can find Natural Language Processing (NLP) that can be used to exploit textual monitoring data such as logging data for fault prediction. However, there exists some unstructured texts that reduce the data quality and provide an un-explainable prediction of faults. To remedy this situation, this paper proposes a NLP methodology for system breakdown prediction. This methodology starts by cleaning textual data. Then, cleaned data and their labels, which represent the breakdown origin, are injected into feature encoding models. These two previous steps address special and redundant characters and non-standard spelling terms. Thus, they allow classifier models to learn mapping input texts to their corresponding labels without confusion for the fault prediction, making these predictions explainable. The proposed methodology is applied to real logging data carried out from a machine tool of a French company SCODER. The machine tool generates six failure labels that classifiers learn to predict. The prediction accuracy obtained by the proposed methodology, compared to existing methods, is promising and can be useful for a failure prognostics.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 50 条
  • [21] Experimental Disease Prediction Research on Combining Natural Language Processing and Machine Learning
    Yu, Hong Qing
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 145 - 150
  • [22] Financial Risk Prediction and Management using Machine Learning and Natural Language Processing
    Li, Tianyu
    Dai, Xiangyu
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 211 - 219
  • [23] DESIGN OF MACHINE-TOOL SPINDLES BASED ON TRANSIENT ANALYSIS
    REDDY, VR
    SHARAN, AM
    JOURNAL OF MECHANISMS TRANSMISSIONS AND AUTOMATION IN DESIGN-TRANSACTIONS OF THE ASME, 1985, 107 (03): : 346 - 352
  • [24] Tamp-X: Attacking explainable natural language classifiers through tampered activations
    Ali, Hassan
    Khan, Muhammad Suleman
    Al-Fuqaha, Ala
    Qadir, Junaid
    COMPUTERS & SECURITY, 2022, 120
  • [25] From NLP (Natural Language Processing) to MLP (Machine Language Processing)
    Teufl, Peter
    Payer, Udo
    Lackner, Guenter
    COMPUTER NETWORK SECURITY, 2010, 6258 : 256 - +
  • [26] From NLP (Natural Language Processing) to MLP (Machine Language Processing)
    Institute for Applied Information Processing and Communications , Graz University of Technology, Austria
    不详
    不详
    Lect. Notes Comput. Sci., (256-269):
  • [27] Arabic natural language processing and machine learning-based systems
    Larabi Marie-Sainte S.
    Alalyani N.
    Alotaibi S.
    Ghouzali S.
    Abunadi I.
    IEEE Access, 2019, 7 : 7011 - 7020
  • [28] RESEARCH ON THE TEXT CLASSIFICATION BASED ON NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING
    Chen Keming
    Zheng Jianguo
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2016, 22 (03): : 2484 - 2494
  • [29] Explainable multimodal prediction of treatment-resistance in patients with depression leveraging brain morphometry and natural language processing
    Kim, Narae
    Kim, Narae
    Park, Chulhyoung
    Gan, Sujin
    Son, Sang Joon
    Park, Rae Woong
    Park, Bumhee
    PSYCHIATRY RESEARCH, 2024, 334
  • [30] Arabic Natural Language Processing and Machine Learning-Based Systems
    Marie-Sainte, Souad Larabi
    Alalyani, Nada
    Alotaibi, Sihaam
    Ghouzali, Sanaa
    Abunadi, Ibrahim
    IEEE ACCESS, 2019, 7 : 7011 - 7020