A label learning approach using competitive population optimization algorithm feature selection to improve multi-label classification algorithms

被引:1
|
作者
Cui, Lianhe [1 ]
机构
[1] Qiqihar Univ, Sch Comp & Control Engn, Qiqihar 161006, Heilongjiang, Peoples R China
关键词
Competitive swarm optimizer; Feature selection; Multi -label data; Reconstruction error; Sparse representation;
D O I
10.1016/j.jksuci.2024.102083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the crucial pre-processing stages in data mining and machine learning is feature selection, which is used to choose a subset of representative characteristics and decrease dimensions. By eliminating unnecessary and redundant features, feature selection can improve machine learning tasks' accuracy. This work presents a novel multi-label classification (MLC) model utilizing a combination of stack regression (RR) and original label space transformation (IPLST) called RR-IPLST (original label space transformation-ridge regression). A novel embedded technique is implemented, utilizing competitive crowding optimizer (CSO) for multi-label feature selection. Particles are first created using this procedure, after which they are split into two equal groups and compete in pairs. The winners advance to the next iteration, while the losers pick up tips from the victors. At the conclusion of each iteration, the objective function for every particle is determined. A local search technique inspired by the gradient descent algorithm is used to find the local structure of the data, and half of the initial population is produced by the similarity between features and labels in order to boost the convergence rate. Ultimately, feature selection is carried out depending on the best particle. Six popular and sophisticated multilabel feature selection techniques are evaluated to see how well the suggested approach performs. According to the simulation results, the application of the suggested solution performs better than comparable techniques in terms of stability, accuracy, precision, convergence, error measurement, and other criteria that have been examined on various data sets. In 93.35% of cases, the test results demonstrate superiority over traditional algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Learning correlation information for multi-label feature selection
    Fan, Yuling
    Liu, Jinghua
    Tang, Jianeng
    Liu, Peizhong
    Lin, Yaojin
    Du, Yongzhao
    PATTERN RECOGNITION, 2024, 145
  • [42] Label Selection Algorithm Based on Iteration Column Subset Selection for Multi-label Classification
    Peng, Tao
    Li, Jun
    Xu, Jianhua
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I, 2022, 13426 : 287 - 301
  • [43] A lightweight filter based feature selection approach for multi-label text classification
    Dhal P.
    Azad C.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (09) : 12345 - 12357
  • [44] Multi-label feature selection considering label supplementation
    Zhang, Ping
    Liu, Guixia
    Gao, Wanfu
    Song, Jiazhi
    PATTERN RECOGNITION, 2021, 120 (120)
  • [45] Independent Feature and Label Components for Multi-label Classification
    Zhong, Yongjian
    Xu, Chang
    Du, Bo
    Zhang, Lefei
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 827 - 836
  • [46] Multi-label feature selection via label relaxation
    Fan, Yuling
    Liu, Peizhong
    Liu, Jinghua
    APPLIED SOFT COMPUTING, 2025, 175
  • [47] A COPRAS-based Approach to Multi-Label Feature Selection for Text Classification
    Mohanrasu, S. S.
    Janani, K.
    Rakkiyappan, R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 222 : 3 - 23
  • [48] Feature Selection for Multi-label Learning Using Mutual Information and GA
    Yu, Ying
    Wang, Yinglong
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 454 - 463
  • [49] Multi-label Feature selection with adaptive graph learning and label information enhancement
    Qin, Zhi
    Chen, Hongmei
    Mi, Yong
    Luo, Chuan
    Horng, Shi-Jinn
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [50] Robust Label and Feature Space Co-Learning for Multi-Label Classification
    Liu, Zhifeng
    Tang, Chuanjing
    Abhadiomhen, Stanley Ebhohimhen
    Shen, Xiang-Jun
    Li, Yangyang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11846 - 11859