A label learning approach using competitive population optimization algorithm feature selection to improve multi-label classification algorithms

被引:1
|
作者
Cui, Lianhe [1 ]
机构
[1] Qiqihar Univ, Sch Comp & Control Engn, Qiqihar 161006, Heilongjiang, Peoples R China
关键词
Competitive swarm optimizer; Feature selection; Multi -label data; Reconstruction error; Sparse representation;
D O I
10.1016/j.jksuci.2024.102083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the crucial pre-processing stages in data mining and machine learning is feature selection, which is used to choose a subset of representative characteristics and decrease dimensions. By eliminating unnecessary and redundant features, feature selection can improve machine learning tasks' accuracy. This work presents a novel multi-label classification (MLC) model utilizing a combination of stack regression (RR) and original label space transformation (IPLST) called RR-IPLST (original label space transformation-ridge regression). A novel embedded technique is implemented, utilizing competitive crowding optimizer (CSO) for multi-label feature selection. Particles are first created using this procedure, after which they are split into two equal groups and compete in pairs. The winners advance to the next iteration, while the losers pick up tips from the victors. At the conclusion of each iteration, the objective function for every particle is determined. A local search technique inspired by the gradient descent algorithm is used to find the local structure of the data, and half of the initial population is produced by the similarity between features and labels in order to boost the convergence rate. Ultimately, feature selection is carried out depending on the best particle. Six popular and sophisticated multilabel feature selection techniques are evaluated to see how well the suggested approach performs. According to the simulation results, the application of the suggested solution performs better than comparable techniques in terms of stability, accuracy, precision, convergence, error measurement, and other criteria that have been examined on various data sets. In 93.35% of cases, the test results demonstrate superiority over traditional algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Dynamic multi-label feature selection algorithm based on label importance and label correlation
    Chen, Weiliang
    Sun, Xiao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3379 - 3396
  • [22] Partial multi-label feature selection based on label distribution learning
    Lin, Yaojin
    Li, Yulin
    Lin, Shidong
    Guo, Lei
    Mao, Yu
    PATTERN RECOGNITION, 2025, 164
  • [23] Feature selection for multi-label naive Bayes classification
    Zhang, Min-Ling
    Pena, Jose M.
    Robles, Victor
    INFORMATION SCIENCES, 2009, 179 (19) : 3218 - 3229
  • [24] Categorizing feature selection methods for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    ARTIFICIAL INTELLIGENCE REVIEW, 2018, 49 (01) : 57 - 78
  • [25] A lazy feature selection method for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    INTELLIGENT DATA ANALYSIS, 2021, 25 (01) : 21 - 34
  • [26] Feature Selection in Multi-label classification through MLQPFS
    Soheili, Majid
    Moghadam, Amir-Massoud Eftekhari
    2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, : 430 - 434
  • [27] Categorizing feature selection methods for multi-label classification
    Rafael B. Pereira
    Alexandre Plastino
    Bianca Zadrozny
    Luiz H. C. Merschmann
    Artificial Intelligence Review, 2018, 49 : 57 - 78
  • [28] Feature selection for multi-label classification using multivariate mutual information
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION LETTERS, 2013, 34 (03) : 349 - 357
  • [29] An efficient Pareto-based feature selection algorithm for multi-label classification
    Hashemi, Amin
    Dowlatshahi, Mohammad Bagher
    Nezamabadi-pour, Hossein
    INFORMATION SCIENCES, 2021, 581 : 428 - 447
  • [30] Joint multi-label classification and label correlations with missing labels and feature selection
    He, Zhi-Fen
    Yang, Ming
    Gao, Yang
    Liu, Hui-Dong
    Yin, Yilong
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 145 - 158