Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data

被引:0
|
作者
Ramachandran, Sai Niranjan [1 ]
Mukhopadhyay, Rudrabha [2 ]
Agarwal, Madhav [2 ]
Jawahar, C. V. [2 ]
Namboodiri, Vinay [3 ]
机构
[1] Indian Inst Sci Bangalore, Bangalore, India
[2] Int Inst Informat Technol Hyderabad, Hyderabad, India
[3] Univ Bath, Bath, Avon, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work tackles the important task of understanding out-of-distribution behavior in two prominent types of generative models, i.e., GANs and Diffusion models. Understanding this behavior is crucial in understanding their broader utility and risks as these systems are increasingly deployed in our daily lives. Our first contribution is demonstrating that diffusion spaces outperform GANs' latent spaces in inverting high-quality OOD images. We also provide a theoretical analysis attributing this to the lack of prior holes in diffusion spaces. Our second significant contribution is to provide a theoretical hypothesis that diffusion spaces can be projected onto a bounded hypersphere, enabling image manipulation through geodesic traversal between inverted images. Our analysis shows that different geodesics share common attributes for the same manipulation, which we leverage to perform various image manipulations. We conduct thorough empirical evaluations to support and validate our claims. Finally, our third and final contribution introduces a novel approach to the fewshot sampling for out-of-distribution data by inverting a few images to sample from the cluster formed by the inverted latents. The proposed technique achieves state-of-the-art results for the few-shot generation task in terms of image quality. Our research underscores the promise of diffusion spaces in out-of-distribution imaging and offers avenues for further exploration. Please find more details about our project at http: //cvit.iiit.ac.in/research/projects/cvit- projects/diffusionOOD
引用
收藏
页码:14767 / 14775
页数:9
相关论文
共 50 条
  • [31] Deep Stable Learning for Out-Of-Distribution Generalization
    Zhang, Xingxuan
    Cui, Peng
    Xu, Renzhe
    Zhou, Linjun
    He, Yue
    Shen, Zheyan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5368 - 5378
  • [32] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [33] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [34] Towards a Theoretical Framework of Out-of-Distribution Generalization
    Ye, Haotian
    Xie, Chuanlong
    Cai, Tianle
    Li, Ruichen
    Li, Zhenguo
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [35] The Value of Out-of-Distribution Data
    De Silva, Ashwin
    Ramesh, Rahul
    Priebe, Carey E.
    Chaudhari, Pratik
    Vogelstein, Joshua T.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [36] Leveraging diffusion models for unsupervised out-of-distribution detection on image manifold
    Liu, Zhenzhen
    Zhou, Jin Peng
    Weinberger, Kilian Q.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [37] DEEPLENS: Interactive Out-of-distribution Data Detection in NLP Models
    Song, Da
    Wang, Zhijie
    Huang, Yuheng
    Ma, Lei
    Zhang, Tianyi
    PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, 2023,
  • [38] Pseudo Outlier Exposure for Out-of-Distribution Detection using Pretrained Transformers
    Kim, Jaeyoung
    Jung, Kyuheon
    Na, Dongbin
    Jang, Sion
    Park, Eunbin
    Choi, Sungchul
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 1469 - 1482
  • [39] Toward Out-of-Distribution Generalization Through Inductive Biases
    Moruzzi, Caterina
    PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2021, 2022, 63 : 57 - 66
  • [40] DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
    Sun, Xin
    Wang, Liang
    Liu, Qiang
    Wu, Shu
    Wang, Zilei
    Wang, Liang
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2794 - 2805