Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data

被引:0
|
作者
Ramachandran, Sai Niranjan [1 ]
Mukhopadhyay, Rudrabha [2 ]
Agarwal, Madhav [2 ]
Jawahar, C. V. [2 ]
Namboodiri, Vinay [3 ]
机构
[1] Indian Inst Sci Bangalore, Bangalore, India
[2] Int Inst Informat Technol Hyderabad, Hyderabad, India
[3] Univ Bath, Bath, Avon, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work tackles the important task of understanding out-of-distribution behavior in two prominent types of generative models, i.e., GANs and Diffusion models. Understanding this behavior is crucial in understanding their broader utility and risks as these systems are increasingly deployed in our daily lives. Our first contribution is demonstrating that diffusion spaces outperform GANs' latent spaces in inverting high-quality OOD images. We also provide a theoretical analysis attributing this to the lack of prior holes in diffusion spaces. Our second significant contribution is to provide a theoretical hypothesis that diffusion spaces can be projected onto a bounded hypersphere, enabling image manipulation through geodesic traversal between inverted images. Our analysis shows that different geodesics share common attributes for the same manipulation, which we leverage to perform various image manipulations. We conduct thorough empirical evaluations to support and validate our claims. Finally, our third and final contribution introduces a novel approach to the fewshot sampling for out-of-distribution data by inverting a few images to sample from the cluster formed by the inverted latents. The proposed technique achieves state-of-the-art results for the few-shot generation task in terms of image quality. Our research underscores the promise of diffusion spaces in out-of-distribution imaging and offers avenues for further exploration. Please find more details about our project at http: //cvit.iiit.ac.in/research/projects/cvit- projects/diffusionOOD
引用
收藏
页码:14767 / 14775
页数:9
相关论文
共 50 条
  • [21] Understanding Failures in Out-of-Distribution Detection with Deep Generative Models
    Zhang, Lily H.
    Goldstein, Mark
    Ranganath, Rajesh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [22] Out-of-distribution generalization for learning quantum dynamics
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Ezzell, Nicholas
    Gibbs, Joe
    Sornborger, Andrew T.
    Cincio, Lukasz
    Coles, Patrick J.
    Holmes, Zoe
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [23] On the Out-of-distribution Generalization of Probabilistic Image Modelling
    Zhang, Mingtian
    Zhang, Andi
    McDonagh, Steven
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [24] Assaying Out-Of-Distribution Generalization in Transfer Learning
    Wenzel, Florian
    Dittadi, Andrea
    Gehler, Peter
    Simon-Gabriel, Carl-Johann
    Horn, Max
    Zietlow, Dominik
    Kernert, David
    Russell, Chris
    Brox, Thomas
    Schiele, Bernt
    Scholkopf, Bernhard
    Locatello, Francesco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Out-of-distribution Generalization and Its Applications for Multimedia
    Wang, Xin
    Cui, Peng
    Zhu, Wenwu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5681 - 5682
  • [26] Out-of-Distribution Generalization With Causal Feature Separation
    Wang, Haotian
    Kuang, Kun
    Lan, Long
    Wang, Zige
    Huang, Wanrong
    Wu, Fei
    Yang, Wenjing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1758 - 1772
  • [27] A Stable Vision Transformer for Out-of-Distribution Generalization
    Yu, Haoran
    Liu, Baodi
    Wang, Yingjie
    Zhang, Kai
    Tao, Dapeng
    Liu, Weifeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 328 - 339
  • [28] Counterfactual Active Learning for Out-of-Distribution Generalization
    Deng, Xun
    Wang, Wenjie
    Feng, Fuli
    Zhang, Hanwang
    He, Xiangnan
    Liao, Yong
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11362 - 11377
  • [29] Diverse Weight Averaging for Out-of-Distribution Generalization
    Rame, Alexandre
    Kirchmeyer, Matthieu
    Rahier, Thibaud
    Rakotomamonjy, Alain
    Gallinari, Patrick
    Cord, Matthieu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [30] Out-of-distribution Generalization with Causal Invariant Transformations
    Wang, Ruoyu
    Yi, Mingyang
    Chen, Zhitang
    Zhu, Shengyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 375 - 385