Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements

被引:1
|
作者
Oh, Gyutaek [1 ]
Moon, Yeonsil [2 ]
Moon, Won-Jin [3 ]
Ye, Jong Chul [4 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Konkuk Univ, Med Ctr, Dept Neurol, 120-1 Neungdong Ro, Seoul 05030, South Korea
[3] Konkuk Univ, Dept Radiol, Med Ctr, 120 1 Neungdong Ro, Seoul 05030, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic contrast-enhanced MRI; Unpaired deep learning; Optimal transport; CycleGAN; DCE-MRI; KINETIC-PARAMETERS; SELECTION; CYCLEGAN; TRACER;
D O I
10.1016/j.neuroimage.2024.120571
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics -driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Deconvolution of dynamic contrast-enhanced MRI data by linear inversion: Choice of the regularization parameter
    Sourbron, S
    Luypaert, R
    Van Schuerbeek, P
    Dujardin, M
    Stadnik, T
    Osteaux, M
    MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (01) : 209 - 213
  • [32] Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer
    Huang, Hongyan
    Mo, Junyang
    Ding, Zhiguang
    Peng, Xuehua
    Liu, Ruihao
    Zhuang, Danping
    Zhang, Yuzhong
    Hu, Genwen
    Huang, Bingsheng
    Qiu, Yingwei
    RADIOLOGY, 2025, 314 (01)
  • [33] Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI
    Gong, Enhao
    Pauly, John M.
    Wintermark, Max
    Zaharchuk, Greg
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (02) : 330 - 340
  • [34] Improvement in breast lesion characterization with dynamic contrast-enhanced MRI using pharmacokinetic modeling and bookend T1 measurements
    Cron, GO
    Kelcz, F
    Santyr, GE
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (05) : 1066 - 1070
  • [35] Pharmacokinetic modeling of dynamic contrast-enhanced MRI using a reference region and input function tail
    Ahmed, Zaki
    Levesque, Ives R.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) : 286 - 298
  • [36] DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data
    Juan E Ortuño
    María J Ledesma-Carbayo
    Rui V Simões
    Ana P Candiota
    Carles Arús
    Andrés Santos
    BMC Bioinformatics, 14
  • [37] DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data
    Ortuno, Juan E.
    Ledesma-Carbayo, Maria J.
    Simoes, Rui V.
    Candiota, Ana P.
    Arus, Carles
    Santos, Andres
    BMC BIOINFORMATICS, 2013, 14
  • [38] Reference region extraction by clustering for the pharmacokinetic analysis of dynamic contrast-enhanced MRI in prostate cancer
    Ikoma, Yoko
    Kishimoto, Riwa
    Tachibana, Yasuhiko
    Omatsu, Tokuhiko
    Kasuya, Goro
    Makishima, Hirokazu
    Higashi, Tatsuya
    Obata, Takayuki
    Tsuji, Hiroshi
    MAGNETIC RESONANCE IMAGING, 2020, 66 : 185 - 192
  • [39] A deep learning model based on self-supervised learning for identifying subtypes of proliferative hepatocellular carcinoma from dynamic contrast-enhanced MRI
    Hui Qu
    Shuairan Zhang
    Xuedan Li
    Yuan Miao
    Yuxi Han
    Ronghui Ju
    Xiaoyu Cui
    Yiling Li
    Insights into Imaging, 16 (1)
  • [40] Machine learning paradigm for dynamic contrast-enhanced MRI evaluation of expanding bladder
    Wu, Dee H.
    Chen, Zhongning
    North, Justin C.
    Biswas, Mainak
    Vo, Jonathan
    Suri, Jasjit S.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2020, 25 : 1746 - 1764