Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements

被引:1
|
作者
Oh, Gyutaek [1 ]
Moon, Yeonsil [2 ]
Moon, Won-Jin [3 ]
Ye, Jong Chul [4 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Konkuk Univ, Med Ctr, Dept Neurol, 120-1 Neungdong Ro, Seoul 05030, South Korea
[3] Konkuk Univ, Dept Radiol, Med Ctr, 120 1 Neungdong Ro, Seoul 05030, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic contrast-enhanced MRI; Unpaired deep learning; Optimal transport; CycleGAN; DCE-MRI; KINETIC-PARAMETERS; SELECTION; CYCLEGAN; TRACER;
D O I
10.1016/j.neuroimage.2024.120571
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics -driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Improving the pharmacokinetic parameter measurement in dynamic contrast-enhanced MRI by use of the arterial input function: Theory and clinical application
    Yang, Xiangyu
    Liang, Jiachao
    Heverhagen, Johannes T.
    Jia, Guang
    Schmalbrock, Petra
    Sammet, Steffen
    Koch, Regina
    Knopp, Michael V.
    MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (06) : 1448 - 1456
  • [22] Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI
    Debus, C.
    Floca, R.
    Noerenberg, D.
    Abdollahi, A.
    Ingrisch, M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (24): : 9322 - 9340
  • [23] Grading of pancreatic neuroendocrine neoplasms using pharmacokinetic parameters derived from dynamic contrast-enhanced MRI
    Zhao, Weiwei
    Quan, Zhiyong
    Huang, Xufang
    Ren, Jing
    Wen, Didi
    Zhang, Guangwen
    Shi, Zhongqiang
    Yin, Hong
    Huan, Yi
    ONCOLOGY LETTERS, 2018, 15 (06) : 8349 - 8356
  • [24] Efficient estimation of pharmacokinetic parameters from breast dynamic contrast-enhanced MRI based on a convolutional neural network for predicting molecular subtypes
    Zhang, Liangliang
    Fan, Ming
    Li, Lihua
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (24):
  • [25] Dynamic contrast-enhanced MRI of prostate cancer at 3 T: A study of pharmacokinetic parameters
    Ocak, Iclal
    Bernardo, Marcelino
    Metzger, Greg
    Barrett, Tristan
    Pinto, Peter
    Albert, Paul S.
    Choyke, Peter L.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2007, 189 (04) : W192 - W201
  • [26] Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer
    Li, Xia
    Welch, E. Brian
    Chakravarthy, A. Bapsi
    Xu, Lei
    Arlinghaus, Lori R.
    Farley, Jaime
    Mayer, Ingrid A.
    Kelley, Mark C.
    Meszoely, Ingrid M.
    Means-Powell, Julie
    Abramson, Vandana G.
    Grau, Ana M.
    Gore, John C.
    Yankeelov, Thomas E.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (01) : 261 - 271
  • [27] SYSTEM IDENTIFICATION THEORY APPLIED TO PHARMACOKINETIC MODELING IN DYNAMIC CONTRAST-ENHANCED CT AND MRI
    Aerts, H.
    Backes, W.
    RADIOTHERAPY AND ONCOLOGY, 2009, 92 : S83 - S83
  • [28] Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate
    Kargar, Soudabeh
    Borisch, Eric A.
    Froemming, Adam T.
    Kawashima, Akira
    Mynderse, Lance A.
    Stinson, Eric G.
    Trzasko, Joshua D.
    Riederer, Stephen J.
    MAGNETIC RESONANCE IMAGING, 2018, 48 : 50 - 61
  • [29] Estimating Kinetic Parameter Maps From Dynamic Contrast-Enhanced MRI Using Spatial Prior Knowledge
    Kelm, Bernd Michael
    Menze, Bjoern H.
    Nix, Oliver
    Zechmann, Christian M.
    Hamprecht, Fred A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (10) : 1534 - 1547
  • [30] TDM-STARGAN: STARGAN USING TIME DIFFERENCE MAP TO GENERATE DYNAMIC CONTRAST-ENHANCED MRI FROM ULTRAFAST DYNAMIC CONTRAST-ENHANCED MRI
    Oh, Young-tack
    Ko, Eunsook
    Park, Hyunjin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,