Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements

被引:1
|
作者
Oh, Gyutaek [1 ]
Moon, Yeonsil [2 ]
Moon, Won-Jin [3 ]
Ye, Jong Chul [4 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Konkuk Univ, Med Ctr, Dept Neurol, 120-1 Neungdong Ro, Seoul 05030, South Korea
[3] Konkuk Univ, Dept Radiol, Med Ctr, 120 1 Neungdong Ro, Seoul 05030, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic contrast-enhanced MRI; Unpaired deep learning; Optimal transport; CycleGAN; DCE-MRI; KINETIC-PARAMETERS; SELECTION; CYCLEGAN; TRACER;
D O I
10.1016/j.neuroimage.2024.120571
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics -driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Patient-specific pharmacokinetic parameter estimation on dynamic contrast-enhanced MRI of prostate: Preliminary evaluation of a novel AIF-free estimation method
    Ginsburg, Shoshana B.
    Taimen, Pekka
    Merisaari, Harri
    Vainio, Paula
    Bostrom, Peter J.
    Aronen, Hannu J.
    Jambor, Ivan
    Madabhushi, Anant
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (06) : 1405 - 1414
  • [2] Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate
    Huisman, HJ
    Engelbrecht, MR
    Barentsz, JO
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 13 (04) : 607 - 614
  • [3] Improving the Reliability of Pharmacokinetic Parameters at Dynamic Contrast-enhanced MRI in Astrocytomas: A Deep Learning Approach
    Choi, Kyu Sung
    You, Sung-Hye
    Han, Yoseob
    Ye, Jong Chul
    Jeong, Bumseok
    Choi, Seung Hong
    RADIOLOGY, 2020, 297 (01) : 178 - 188
  • [4] Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF
    Duan, Chong
    Kallehauge, Jesper F.
    Perez-Torres, Carlos J.
    Bretthorst, G. Larry
    Beeman, Scott C.
    Tanderup, Kari
    Ackerman, Joseph J. H.
    Garbow, Joel R.
    MOLECULAR IMAGING AND BIOLOGY, 2018, 20 (01) : 150 - 159
  • [5] Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF
    Chong Duan
    Jesper F. Kallehauge
    Carlos J. Pérez-Torres
    G. Larry Bretthorst
    Scott C. Beeman
    Kari Tanderup
    Joseph J. H. Ackerman
    Joel R. Garbow
    Molecular Imaging and Biology, 2018, 20 : 150 - 159
  • [6] Uncertainty estimation in dynamic contrast-enhanced MRI
    Garpebring, Anders
    Brynolfsson, Patrik
    Yu, Jun
    Wirestam, Ronnie
    Johansson, Adam
    Asklund, Thomas
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (04) : 992 - 1002
  • [7] The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI
    Melbourne, A.
    Hipwell, J.
    Modat, M.
    Mertzanidou, T.
    Huisman, H.
    Ourselin, S.
    Hawkes, D. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (24): : 7693 - 7708
  • [8] Diagnosis of Spinal Lesion Using Heuristic and Pharmacokinetic Parameter Measured by Dynamic Contrast-Enhanced MRI
    Lang, Ning
    Yuan, Huishu
    Yu, Hon J.
    Su, Min-Ying
    ACADEMIC RADIOLOGY, 2017, 24 (07) : 867 - 875
  • [9] Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI
    Jing, Juntong
    Mekhanik, Anthony
    Schellenberg, Melanie
    Murray, Victor
    Cohen, Ouri
    Otazo, Ricardo
    MAGNETIC RESONANCE IMAGING, 2025, 117
  • [10] Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI
    Cheng, Hai-Ling Margaret
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 28 (03) : 736 - 743