Discrete kdV equations;
Implicit Euler scheme;
Numerical solutions;
Numerical attractors;
Semicontinuity of attractors;
RANDOM ATTRACTORS;
LATTICE SYSTEMS;
APPROXIMATIONS;
EXISTENCE;
D O I:
10.1016/j.matcom.2024.05.025
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
We study the numerical scheme of both solution and attractor for the time -space discrete nonlinear damping Korteweg-de Vries (KdV) equation, which is neither conservative nor coercive. First, we establish a new Taylor expansion as well as a global attractor for the KdV lattice system. Second, we prove the unique existence of numerical solution as well as numerical attractor for the discrete -time KdV lattice system via the implicit Euler scheme. Third, we estimate the discretization error and interpolation error between continuous -time and discretetime solutions, and then establish the upper semi -convergence from numerical attractors to the global attractor as the time -size tends to zero. Fourth, we establish the finitely dimensional approximation of numerical attractors. Finally, we establish the upper bound as well as the lower semi -convergence of numerical attractors with respect to the external force and the damping constant.
机构:
Univ Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
Inst Univ France, Paris, FranceUniv Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
Klein, Christian
Saut, Jean-Claude
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, FranceUniv Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
Saut, Jean-Claude
Wang, Yuexun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
Lanzhou Univ, Sch Math & Stat, Lanzhou 370000, Peoples R ChinaUniv Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
机构:
Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USAFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Qiao, Zhijun
Fan, Engui
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China