Numerical dynamics for discrete nonlinear damping Korteweg-de Vries equations

被引:2
|
作者
Liu, Guifen [1 ]
Li, Yangrong [1 ]
Wang, Fengling [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete kdV equations; Implicit Euler scheme; Numerical solutions; Numerical attractors; Semicontinuity of attractors; RANDOM ATTRACTORS; LATTICE SYSTEMS; APPROXIMATIONS; EXISTENCE;
D O I
10.1016/j.matcom.2024.05.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the numerical scheme of both solution and attractor for the time -space discrete nonlinear damping Korteweg-de Vries (KdV) equation, which is neither conservative nor coercive. First, we establish a new Taylor expansion as well as a global attractor for the KdV lattice system. Second, we prove the unique existence of numerical solution as well as numerical attractor for the discrete -time KdV lattice system via the implicit Euler scheme. Third, we estimate the discretization error and interpolation error between continuous -time and discretetime solutions, and then establish the upper semi -convergence from numerical attractors to the global attractor as the time -size tends to zero. Fourth, we establish the finitely dimensional approximation of numerical attractors. Finally, we establish the upper bound as well as the lower semi -convergence of numerical attractors with respect to the external force and the damping constant.
引用
收藏
页码:332 / 349
页数:18
相关论文
共 50 条
  • [31] On the full Kostant-Toda system and the discrete Korteweg-de Vries equations
    Barrios Rolania, D.
    Branquinho, A.
    Moreno, A. Foulquie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) : 811 - 820
  • [32] Ion-acoustic solitary wave solutions of nonlinear damped Korteweg-de Vries and damped modified Korteweg-de Vries dynamical equations
    Seadawy, A. R.
    Iqbal, M.
    Lu, D.
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (07) : 1479 - 1489
  • [33] Nonlinear Dynamics of Solitons for the Vector Modified Korteweg-de Vries Equation
    Fenchenko, V.
    Khruslov, E.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2018, 14 (02) : 153 - 168
  • [34] Solutions and continuum limits to nonlocal discrete modified Korteweg-de Vries equations
    Zhao, Song-lin
    Xiang, Xiao-bo
    Shen, Shou-feng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) : 5879 - 5893
  • [35] Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations
    Wang, Jingqun
    Tian, Lixin
    Guo, Boling
    Zhang, Yingnan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [36] Conservation Laws of Discrete Korteweg-de Vries Equation
    Rasin, Olexandr G.
    Hydon, Peter E.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2005, 1
  • [37] Integrability of riccati equations and stationary korteweg-de vries equations
    Zhdanov R.Z.
    Ukrainian Mathematical Journal, 1999, 51 (6) : 958 - 962
  • [38] Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping
    Pazoto, A. F.
    Sepulveda, M.
    Vera Villagran, O.
    NUMERISCHE MATHEMATIK, 2010, 116 (02) : 317 - 356
  • [39] Derivation of Korteweg-de Vries flow equations from nonlinear Schrodinger equation
    Ozer, Mehmet Naci
    Tascan, Filiz
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2265 - 2270
  • [40] FOURTH-ORDER NUMERICAL METHODS FOR THE COUPLED KORTEWEG-DE VRIES EQUATIONS
    Korostil, I. A.
    Clarke, S. R.
    ANZIAM JOURNAL, 2015, 56 (03): : 275 - 285