Low-Rank Matrix Estimation in the Presence of Change-Points

被引:0
|
作者
Shi, Lei [1 ]
Wang, Guanghui [2 ,3 ]
Zou, Changliang [3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Biostat, Berkeley, CA 94704 USA
[2] Nankai Univ, Sch Stat & Data Sci, LPMC, KLMDASR, Tianjin 300071, Peoples R China
[3] Nankai Univ, LEBPS, Tianjin 300071, Peoples R China
[4] Nankai Univ, Sch Stat & Data Sci, NITFID, LPMC,KLMDASR, Tianjin 300071, Peoples R China
基金
国家重点研发计划; 上海市自然科学基金; 中国国家自然科学基金;
关键词
High-dimensional data; low-rank estimation; multiple change-point detection; non-asymptotic bounds; rate-optimal estimators; COMPLETION; REGRESSION; RECOVERY; NUMBER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a general trace regression model with multiple structural changes and propose a universal approach for simultaneous exact or near-low-rank matrix recovery and changepoint detection. It incorporates nuclear norm penalized least-squares minimization into a grid search scheme that determines the potential structural break. Under a set of general conditions, we establish the non-asymptotic error bounds with a nearly-oracle rate for the matrix estimators as well as the super-consistency rate for the change-point localization. We use concrete random design instances to justify the appropriateness of the proposed conditions. Numerical results demonstrate the validity and effectiveness of the proposed scheme.
引用
收藏
页数:71
相关论文
共 50 条
  • [41] DOA Estimation of Coherent Sources via Low-Rank Matrix Decomposition
    Yang, Zeqi
    Ma, Shuai
    Liu, Yiheng
    Zhang, Hua
    Lyu, Xiaode
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (11) : 3049 - 3053
  • [42] A variational approach for sparse component estimation and low-rank matrix recovery
    Chen, Zhaofu
    Molina, Rafael
    Katsaggelos, Aggelos K.
    Journal of Communications, 2013, 8 (09): : 600 - 611
  • [43] A structured low-rank matrix pencil for spectral estimation and system identification
    Razavilar, J
    Li, Y
    Liu, KJR
    SIGNAL PROCESSING, 1998, 65 (03) : 363 - 372
  • [44] Grouped Change-Points Detection and Estimation in Panel Data
    Lu, Haoran
    Wang, Dianpeng
    MATHEMATICS, 2024, 12 (05)
  • [45] MAXIMUM A-POSTERIORI ESTIMATION OF CHANGE-POINTS IN THE EEG
    BISCAY, R
    LAVIELLE, M
    GONZALEZ, A
    CLARK, I
    VALDES, P
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1995, 38 (02): : 189 - 196
  • [46] Change-points and bootstrap
    Gombay, E
    Horváth, L
    ENVIRONMETRICS, 1999, 10 (06) : 725 - 736
  • [47] ESTIMATION OF THE CHANGE-POINTS OF THE MEAN RESIDUAL LIFE FUNCTION
    Diallo, Sara
    ADVANCES AND APPLICATIONS IN STATISTICS, 2007, 7 (02) : 157 - 174
  • [48] Improved estimation in tensor regression with multiple change-points
    Ghannam, Mai
    Nkurunziza, Severien
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 4162 - 4221
  • [49] A Converse to Low-Rank Matrix Completion
    Pimentel-Alarcon, Daniel L.
    Nowak, Robert D.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 96 - 100
  • [50] Enhanced Low-Rank Matrix Approximation
    Parekh, Ankit
    Selesnick, Ivan W.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 493 - 497