Low-Rank Matrix Estimation in the Presence of Change-Points

被引:0
|
作者
Shi, Lei [1 ]
Wang, Guanghui [2 ,3 ]
Zou, Changliang [3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Biostat, Berkeley, CA 94704 USA
[2] Nankai Univ, Sch Stat & Data Sci, LPMC, KLMDASR, Tianjin 300071, Peoples R China
[3] Nankai Univ, LEBPS, Tianjin 300071, Peoples R China
[4] Nankai Univ, Sch Stat & Data Sci, NITFID, LPMC,KLMDASR, Tianjin 300071, Peoples R China
基金
国家重点研发计划; 上海市自然科学基金; 中国国家自然科学基金;
关键词
High-dimensional data; low-rank estimation; multiple change-point detection; non-asymptotic bounds; rate-optimal estimators; COMPLETION; REGRESSION; RECOVERY; NUMBER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a general trace regression model with multiple structural changes and propose a universal approach for simultaneous exact or near-low-rank matrix recovery and changepoint detection. It incorporates nuclear norm penalized least-squares minimization into a grid search scheme that determines the potential structural break. Under a set of general conditions, we establish the non-asymptotic error bounds with a nearly-oracle rate for the matrix estimators as well as the super-consistency rate for the change-point localization. We use concrete random design instances to justify the appropriateness of the proposed conditions. Numerical results demonstrate the validity and effectiveness of the proposed scheme.
引用
收藏
页数:71
相关论文
共 50 条
  • [1] ROBUST LOW-RANK MATRIX ESTIMATION
    Elsener, Andreas
    van de Geer, Sara
    ANNALS OF STATISTICS, 2018, 46 (6B): : 3481 - 3509
  • [2] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [3] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [4] Low-Rank Structured Covariance Matrix Estimation
    Shikhaliev, Azer P.
    Potter, Lee C.
    Chi, Yuejie
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 700 - 704
  • [5] TESTING FOR CHANGE-POINTS WITH RANK AND SIGN STATISTICS
    GOMBAY, E
    STATISTICS & PROBABILITY LETTERS, 1994, 20 (01) : 49 - 55
  • [6] Reconstruction of a low-rank matrix in the presence of Gaussian noise
    Shabalin, Andrey A.
    Nobel, Andrew B.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 118 : 67 - 76
  • [7] Low-Rank Matrix Completion in the Presence of High Coherence
    Liu, Guangcan
    Li, Ping
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (21) : 5623 - 5633
  • [8] On critical points of quadratic low-rank matrix optimization problems
    Uschmajew, Andre
    Vandereycken, Bart
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2626 - 2651
  • [9] On critical points of quadratic low-rank matrix optimization problems
    Uschmajew A.
    Vandereycken B.
    IMA Journal of Numerical Analysis, 2021, 40 (04) : 2626 - 2651
  • [10] Sequential detection and estimation of change-points
    Brodsky B.
    Sequential Analysis, 2010, 29 (02) : 217 - 233