Estimation for generalized linear cointegration regression models through composite quantile regression approach

被引:0
|
作者
Liu, Bingqi [1 ]
Pang, Tianxiao [1 ]
Cheng, Siang [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
关键词
Composite quantile regression; Fully modified procedure; Generalized linear cointegration regression model; Portfolio optimization; TIME-SERIES REGRESSION; LIMIT THEORY;
D O I
10.1016/j.frl.2024.105567
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper introduces a meaningful approach employing composite quantile regression (CQR) to estimate generalized linear cointegration regression models. We elucidate the fundamental structure of the proposed model by presenting its underlying expressions and derive the asymptotic distribution of the estimates of model parameters. Through extensive simulations, our findings demonstrate the superior robustness and precision of the CQR method compared to ordinary least squares (OLS) and quantile regression (QR) approaches. The application of the model to economic and financial variables highlights its significant academic and practical value.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Value at risk estimation based on generalized quantile regression
    Wang, Yongqiao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 674 - 678
  • [42] Efficient Quantile Estimation for Functional-Coefficient Partially Linear Regression Models
    Zhangong ZHOU 1 Rong JIANG 2 Weimin QIAN 31 Department of Statistics
    Chinese Annals of Mathematics(Series B), 2011, 32 (05) : 729 - 740
  • [43] Efficient quantile estimation for functional-coefficient partially linear regression models
    Zhangong Zhou
    Rong Jiang
    Weimin Qian
    Chinese Annals of Mathematics, Series B, 2011, 32 : 729 - 740
  • [44] Efficient quantile estimation for functional-coefficient partially linear regression models
    Zhou, Zhangong
    Jiang, Rong
    Qian, Weimin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (05) : 729 - 740
  • [45] Modelling tourism flows through gravity models: a quantile regression approach
    Santeramo, Fabio Gaetano
    Morelli, Mariangela
    CURRENT ISSUES IN TOURISM, 2016, 19 (11) : 1077 - 1083
  • [46] Quantile regression approach to conditional mode estimation
    Ota, Hirofumi
    Kato, Kengo
    Hara, Satoshi
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3120 - 3160
  • [47] A New Approach to Censored Quantile Regression Estimation
    Yang, Xiaorong
    Narisetty, Naveen Naidu
    He, Xuming
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 417 - 425
  • [48] A penalized approach to covariate selection through quantile regression coefficient models
    Sottile, Gianluca
    Frumento, Paolo
    Chiodi, Marcello
    Bottai, Matteo
    STATISTICAL MODELLING, 2020, 20 (04) : 369 - 385
  • [49] Quantile regression via vector generalized additive models
    Yee, TW
    STATISTICS IN MEDICINE, 2004, 23 (14) : 2295 - 2315
  • [50] DAmcqrnn: An approach to censored monotone composite quantile regression neural network estimation
    Hao, Ruiting
    Han, Qiwei
    Li, Lu
    Yang, Xiaorong
    INFORMATION SCIENCES, 2023, 638