Estimation for generalized linear cointegration regression models through composite quantile regression approach

被引:0
|
作者
Liu, Bingqi [1 ]
Pang, Tianxiao [1 ]
Cheng, Siang [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
关键词
Composite quantile regression; Fully modified procedure; Generalized linear cointegration regression model; Portfolio optimization; TIME-SERIES REGRESSION; LIMIT THEORY;
D O I
10.1016/j.frl.2024.105567
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper introduces a meaningful approach employing composite quantile regression (CQR) to estimate generalized linear cointegration regression models. We elucidate the fundamental structure of the proposed model by presenting its underlying expressions and derive the asymptotic distribution of the estimates of model parameters. Through extensive simulations, our findings demonstrate the superior robustness and precision of the CQR method compared to ordinary least squares (OLS) and quantile regression (QR) approaches. The application of the model to economic and financial variables highlights its significant academic and practical value.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Weighted composite quantile regression for partially linear varying coefficient models
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (16) : 3987 - 4005
  • [22] Bayesian composite quantile regression for linear mixed-effects models
    Tian, Yuzhu
    Lian, Heng
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7717 - 7731
  • [23] A generalized Newton algorithm for quantile regression models
    Zheng, Songfeng
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1403 - 1426
  • [24] A generalized Newton algorithm for quantile regression models
    Songfeng Zheng
    Computational Statistics, 2014, 29 : 1403 - 1426
  • [25] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665
  • [26] Composite support vector quantile regression estimation
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    Computational Statistics, 2014, 29 : 1651 - 1665
  • [27] Optimal subsampling for linear quantile regression models
    Fan, Yan
    Liu, Yukun
    Zhu, Lixing
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1039 - 1057
  • [28] Quantile regression in linear mixed models: a stochastic approximation EM approach
    Galarza, Christian E.
    Lachos, Victor H.
    Bandyopadhyay, Dipankar
    STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 471 - 482
  • [29] Bayesian quantile regression for hierarchical linear models
    Yu, Yang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3451 - 3467
  • [30] Composite quantile estimation in partial functional linear regression model with dependent errors
    Ping Yu
    Ting Li
    Zhongyi Zhu
    Zhongzhan Zhang
    Metrika, 2019, 82 : 633 - 656