Three-Branch Temporal-Spatial Convolutional Transformer for Motor Imagery EEG Classification

被引:4
|
作者
Chen, Weiming [1 ]
Luo, Yiqing [1 ]
Wang, Jie [1 ]
机构
[1] Jilin Univ, Coll Software, Changchun 130012, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Feature extraction; Transformers; Convolution; Brain modeling; Convolutional neural networks; Data augmentation; EEG classification; motor imagery; transformer; temporal-spatial convolutional network; data augmentation; COMPUTER; INTERFACE;
D O I
10.1109/ACCESS.2024.3405652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the classification of motor imagery Electroencephalogram (MI-EEG) signals through deep learning models, challenges such as the insufficiency of feature extraction due to the limited receptive field of single-scale convolutions, and overfitting due to small training sets, can hinder the perception of global dependencies in EEG signals. In this paper, we introduce a network called EEG TBTSCTnet, which represents Three-Branch Temporal-Spatial Convolutional Transformer. This approach expands the size of the training set through Data Augmentation, and then combines local and global features for classification. Specifically, Data Augmentation aims to mitigate the overfitting issue, whereas the Three-Branch Temporal-Spatial Convolution module captures a broader range of multi-scale, low-level local information in EEG signals more effectively than conventional CNNs. The Transformer Encoder module is directly connected to extract global correlations within local temporal-spatial features, utilizing the multi-head attention mechanism to effectively enhance the network's ability to represent relevant EEG signal features. Subsequently, a classifier module based on fully connected layers is used to predict the categories of EEG signals. Finally, extensive experiments were conducted on two public MI-EEG datasets to evaluate the proposed method. The study also allowed for an optimal selection of channels to balance accuracy and cost through weight visualization.
引用
收藏
页码:79754 / 79764
页数:11
相关论文
共 50 条
  • [31] EEG Motor Imagery Classification using Fusion Convolutional Neural Network
    Zouch, Wassim
    Echtioui, Amira
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 548 - 553
  • [32] EEG Representation in Deep Convolutional Neural Networks for Classification of Motor Imagery
    Robinson, Neethu
    Lee, Seong-Whan
    Guan, Cuntai
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1322 - 1326
  • [33] A composite improved attention convolutional network for motor imagery EEG classification
    Liao, Wenzhe
    Miao, Zipeng
    Liang, Shuaibo
    Zhang, Linyan
    Li, Chen
    FRONTIERS IN NEUROSCIENCE, 2025, 19
  • [34] One-Dimensional Convolutional Multi-branch Fusion Network for EEG-Based Motor Imagery Classification
    Liu, Xiaoguang
    Zhang, Mingjin
    Xiong, Shicheng
    Wang, Xiaodong
    Liang, Tie
    Li, Jun
    Xiong, Peng
    Wang, Hongrui
    Liu, Xiuling
    IRBM, 2023, 44 (06)
  • [35] A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification
    Zhao, Xinqiao
    Zhang, Hongmiao
    Zhu, Guilin
    You, Fengxiang
    Kuang, Shaolong
    Sun, Lining
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2164 - 2177
  • [36] STIT-Net- A Wavelet based Convolutional Transformer Model for Motor Imagery EEG Signal Classification in the Sensorimotor Bands
    Chrisilla, S.
    SelvaKumari, R. Shantha
    CLINICAL EEG AND NEUROSCIENCE, 2025,
  • [37] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [38] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chaoqin Chu
    Qinkun Xiao
    Leran Chang
    Jianing Shen
    Na Zhang
    Yu Du
    Heng Xing
    Hui Gao
    Multimedia Tools and Applications, 2023, 82 : 45747 - 45767
  • [39] Classification of Raw Spinal Cord Injury EEG Data Based on the Temporal-Spatial Inception Deep Convolutional Neural Network
    Mirzabagherian, Hamed
    Sardari, Mohammadreza Abbasi
    Menhaj, Mohammad Bagher
    Suratgar, Amir Abolfazl
    2021 9TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2021, : 43 - 50
  • [40] Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery
    Zhang, Rui
    Xu, Peng
    Liu, Tiejun
    Zhang, Yangsong
    Guo, Lanjin
    Li, Peiyang
    Yao, Dezhong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013