Three-Branch Temporal-Spatial Convolutional Transformer for Motor Imagery EEG Classification

被引:4
|
作者
Chen, Weiming [1 ]
Luo, Yiqing [1 ]
Wang, Jie [1 ]
机构
[1] Jilin Univ, Coll Software, Changchun 130012, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Feature extraction; Transformers; Convolution; Brain modeling; Convolutional neural networks; Data augmentation; EEG classification; motor imagery; transformer; temporal-spatial convolutional network; data augmentation; COMPUTER; INTERFACE;
D O I
10.1109/ACCESS.2024.3405652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the classification of motor imagery Electroencephalogram (MI-EEG) signals through deep learning models, challenges such as the insufficiency of feature extraction due to the limited receptive field of single-scale convolutions, and overfitting due to small training sets, can hinder the perception of global dependencies in EEG signals. In this paper, we introduce a network called EEG TBTSCTnet, which represents Three-Branch Temporal-Spatial Convolutional Transformer. This approach expands the size of the training set through Data Augmentation, and then combines local and global features for classification. Specifically, Data Augmentation aims to mitigate the overfitting issue, whereas the Three-Branch Temporal-Spatial Convolution module captures a broader range of multi-scale, low-level local information in EEG signals more effectively than conventional CNNs. The Transformer Encoder module is directly connected to extract global correlations within local temporal-spatial features, utilizing the multi-head attention mechanism to effectively enhance the network's ability to represent relevant EEG signal features. Subsequently, a classifier module based on fully connected layers is used to predict the categories of EEG signals. Finally, extensive experiments were conducted on two public MI-EEG datasets to evaluate the proposed method. The study also allowed for an optimal selection of channels to balance accuracy and cost through weight visualization.
引用
收藏
页码:79754 / 79764
页数:11
相关论文
共 50 条
  • [21] TBFormer: three-branch efficient transformer for semantic segmentation
    Can Wei
    Yan Wei
    Signal, Image and Video Processing, 2024, 18 : 3661 - 3672
  • [22] A double-branch graph convolutional network based on individual differences weakening for motor imagery EEG classification
    Ma, Weifeng
    Wang, Chuanlai
    Sun, Xiaoyong
    Lin, Xuefen
    Wang, Yuchen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [23] TBFormer: three-branch efficient transformer for semantic segmentation
    Wei, Can
    Wei, Yan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3661 - 3672
  • [24] TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI
    Liu, Xiaolin
    Shi, Rongye
    Hui, Qianxin
    Xu, Susu
    Wang, Shuai
    Na, Rui
    Sun, Ying
    Ding, Wenbo
    Zheng, Dezhi
    Chen, Xinlei
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [25] Physics-Informed Attention Temporal Convolutional Network for EEG-Based Motor Imagery Classification
    Altaheri, Hamdi
    Muhammad, Ghulam
    Alsulaiman, Mansour
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 2249 - 2258
  • [26] Attention-Based Multiscale Spatial-Temporal Convolutional Network for Motor Imagery EEG Decoding
    Zhang, Yu
    Li, Penghai
    Cheng, Longlong
    Li, Mingji
    Li, Hongji
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2423 - 2434
  • [27] Recurrent convolutional neural network model based on temporal and spatial feature for motor imagery classification
    Lee, Seung-Bo
    Kim, Hakseung
    Jeong, Ji-Hoon
    Wang, In-Nea
    Lee, Seong-Whan
    Kim, Dong-Joo
    2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 152 - 155
  • [28] Motor imagery-based EEG signals classification by combining temporal and spatial deep characteristics
    Xiaoling, Li
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2020, 13 (04) : 437 - 453
  • [29] A Temporal Convolution Network Solution for EEG Motor Imagery Classification
    Lu, Na
    Yin, Tao
    Jing, Xue
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 796 - 799
  • [30] Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
    Yu, Shiqi
    Wang, Zedong
    Wang, Fei
    Chen, Kai
    Yao, Dezhong
    Xu, Peng
    Zhang, Yong
    Wang, Hesong
    Zhang, Tao
    CEREBRAL CORTEX, 2024, 34 (02)