Multi-view Stable Feature Selection with Adaptive Optimization of View Weights

被引:1
|
作者
Cui, Menghan [1 ]
Wang, Kaixiang [1 ]
Ding, Xiaojian [1 ]
Xu, Zihan [1 ]
Wang, Xin [1 ]
Shi, Pengcheng [1 ]
机构
[1] Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210023, Peoples R China
关键词
Multi-view; Feature selection; View weights; Adaptive optimization; UNSUPERVISED FEATURE-SELECTION; SIMILARITY; GRAPH;
D O I
10.1016/j.knosys.2024.111970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The feature selection problem in multi -view data has garnered widespread attention and research in recent years, leading to the development of numerous feature selection algorithms tailored for multi -view data. However, existing methods often focus solely on known data, overlooking the potential distribution information of unknown data. Additionally, these methods inevitably introduce a large number of parameters to fully utilize the information from different views in multi -view data, thereby reducing the efficiency of model training. To address these issues comprehensively, we propose a novel framework called Multi -view Stable Feature Selection with Adaptive Optimization of View Weights (MvSFS-AOW). Specifically, the framework first employs the Multi -view Stable Feature Selection (MvSFS) algorithm to evaluate and select features from different views. Subsequently, it dynamically adjusts view weights using the Adaptive Optimization of View Weights (AOW) algorithm to achieve optimal generalization performance. By incorporating unknown data into the training process, we enhance the reliability of the framework in practical applications. Furthermore, our framework achieves competitive performance without requiring extensive parameter tuning. Experimental results demonstrate that the proposed framework achieves promising classification and clustering performance on multiple datasets, surpassing other state-of-the-art algorithms. Code for this paper available on: https: //github.com/boredcui/MvSFS-AOW.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-objective genetic algorithm for multi-view feature selection
    Imani, Vandad
    Sevilla-Salcedo, Carlos
    Moradi, Elaheh
    Fortino, Vittorio
    Tohka, Jussi
    APPLIED SOFT COMPUTING, 2024, 167
  • [32] Multi-view feature selection via sparse tensor regression
    Yuan, Haoliang
    Lo, Sio-Long
    Yin, Ming
    Liang, Yong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (05)
  • [33] Structured Multi-view Supervised Feature Selection Algorithm Research
    Shi, Caijuan
    Zhao, Li-Li
    Liu, Liping
    Liu, Jian
    Tian, Qi
    COMPUTER VISION, PT II, 2017, 772 : 149 - 157
  • [34] Robust Re-Weighted Multi-View Feature Selection
    Xue, Yiming
    Wang, Nan
    Yan, Niu
    Zhong, Ping
    Niu, Shaozhang
    Song, Yuntao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 741 - 756
  • [35] Multi-view Feature Augmentation with Adaptive Class Activation Mapping
    Gao, Xiang
    Tian, Yingjie
    Qi, Zhiquan
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 678 - 684
  • [36] Joint Multi-View Unsupervised Feature Selection and Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Wang, Chang-Dong
    Tang, Yong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 16 - 31
  • [37] Multi-view Feature Selection for Labeling Noisy Ticket Data
    Zhou, Wubai
    Zhu, Xiaolong
    Li, Tao
    Shwartz, Larisa
    Grabarnik, Genady Ya.
    NOMS 2018 - 2018 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, 2018,
  • [38] Low-rank feature selection for multi-view regression
    Hu, Rongyao
    Cheng, Debo
    He, Wei
    Wen, Guoqiu
    Zhu, Yonghua
    Zhang, Jilian
    Zhang, Shichao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (16) : 17479 - 17495
  • [39] Efficient multi-view semi-supervised feature selection
    Zhang, Chenglong
    Jiang, Bingbing
    Wang, Zidong
    Yang, Jie
    Lu, Yangfeng
    Wu, Xingyu
    Sheng, Weiguo
    INFORMATION SCIENCES, 2023, 649
  • [40] Consensus learning guided multi-view unsupervised feature selection
    Tang, Chang
    Chen, Jiajia
    Liu, Xinwang
    Li, Miaomiao
    Wang, Pichao
    Wang, Minhui
    Lu, Peng
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 49 - 60