Multi-view Stable Feature Selection with Adaptive Optimization of View Weights

被引:1
|
作者
Cui, Menghan [1 ]
Wang, Kaixiang [1 ]
Ding, Xiaojian [1 ]
Xu, Zihan [1 ]
Wang, Xin [1 ]
Shi, Pengcheng [1 ]
机构
[1] Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210023, Peoples R China
关键词
Multi-view; Feature selection; View weights; Adaptive optimization; UNSUPERVISED FEATURE-SELECTION; SIMILARITY; GRAPH;
D O I
10.1016/j.knosys.2024.111970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The feature selection problem in multi -view data has garnered widespread attention and research in recent years, leading to the development of numerous feature selection algorithms tailored for multi -view data. However, existing methods often focus solely on known data, overlooking the potential distribution information of unknown data. Additionally, these methods inevitably introduce a large number of parameters to fully utilize the information from different views in multi -view data, thereby reducing the efficiency of model training. To address these issues comprehensively, we propose a novel framework called Multi -view Stable Feature Selection with Adaptive Optimization of View Weights (MvSFS-AOW). Specifically, the framework first employs the Multi -view Stable Feature Selection (MvSFS) algorithm to evaluate and select features from different views. Subsequently, it dynamically adjusts view weights using the Adaptive Optimization of View Weights (AOW) algorithm to achieve optimal generalization performance. By incorporating unknown data into the training process, we enhance the reliability of the framework in practical applications. Furthermore, our framework achieves competitive performance without requiring extensive parameter tuning. Experimental results demonstrate that the proposed framework achieves promising classification and clustering performance on multiple datasets, surpassing other state-of-the-art algorithms. Code for this paper available on: https: //github.com/boredcui/MvSFS-AOW.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] MvFS: Multi-view Feature Selection for Recommender System
    Lee, Youngjune
    Jeong, Yeongjong
    Park, Keunchan
    Kang, SeongKu
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4048 - 4052
  • [22] Active multi-view object recognition: A unifying view on online feature selection and view planning
    Potthast, Christian
    Breitenmoser, Andreas
    Sha, Fei
    Sukhatme, Gaurav S.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 84 : 31 - 47
  • [23] Feature adaptive multi-view hash for image search
    Sun, Li
    Song, Bing
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (09): : 5845 - 5865
  • [24] Multi-View Feature Selection for Heterogeneous Face Recognition
    Gui, Jie
    Li, Ping
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 983 - 988
  • [25] Unified View Imputation and Feature Selection Learning for Incomplete Multi-view Data
    Huang, Yanyong
    Shen, Zongxin
    Li, Tianrui
    Lv, Fengmao
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 4192 - 4200
  • [26] LOCALLY ADAPTIVE FEATURE WEIGHTING FOR MULTI-VIEW CLUSTERING
    Deng, Q.
    Yang, Y.
    He, M.
    Xing, H.
    UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 139 - 145
  • [27] Embedded feature fusion for multi-view multi-label feature selection
    Hao, Pingting
    Gao, Wanfu
    Hu, Liang
    PATTERN RECOGNITION, 2025, 157
  • [28] Semi-supervised multi-view feature selection with adaptive similarity fusion and learning
    Jiang, Bingbing
    Liu, Jun
    Wang, Zidong
    Zhang, Chenglong
    Yang, Jie
    Wang, Yadi
    Sheng, Weiguo
    Ding, Weiping
    PATTERN RECOGNITION, 2025, 159
  • [29] Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data
    Wang, Minjie
    Allen, Genevera, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [30] Integrative generalized convex clustering optimization and feature selection for mixed multi-view data
    Wang, Minjie
    Allen, Genevera I.
    1600, Microtome Publishing (22):