smashGP: Large-Scale Spatial Modeling via Matrix-Free Gaussian Processes

被引:0
|
作者
Erlandson, Lucas [1 ]
Gomez, Ana Maria Estrada [2 ]
Chow, Edmond [1 ]
Paynabar, Kamran [3 ]
机构
[1] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA USA
[2] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA USA
关键词
Gaussian processes; Hierarchical matrices; Matrix-free methods; Spatial data analysis; RANDOM-FIELDS; CLUSTERS;
D O I
10.1080/10618600.2024.2353653
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian processes are essential for spatial data analysis. Not only do they allow the prediction of unknown values, but they also allow for uncertainty quantification. However, in the era of big data, directly using Gaussian processes has become computationally infeasible as cubic run times are required for dense matrix decomposition and inversion. Various alternatives have been proposed to reduce the computational burden of directly fitting Gaussian processes. These alternatives rely on assumptions on the underlying structure of the covariance or precision matrices, such as sparsity or low-rank. In contrast, this article uses hierarchical matrices and matrix-free methods to enable the computation of Gaussian processes for large spatial datasets by exploiting the underlying kernel properties. The proposed framework, smashGP, represents the covariance matrix as an H2 matrix in O(n) time and is able to estimate the unknown parameters of the model and predict the values of spatial observations at unobserved locations in O(n log n) time thanks to fast matrix-vector products. Additionally, it can be parallelized to take full advantage of shared-memory computing environments. With simulations and case studies, we illustrate the advantage of smashGP to model large-scale spatial datasets. Supplementary materials for this article are available online.
引用
收藏
页码:15 / 33
页数:19
相关论文
共 50 条
  • [41] Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities
    Noack, Marcus M.
    Zwart, Petrus H.
    Ushizima, Daniela M.
    Fukuto, Masafumi
    Yager, Kevin G.
    Elbert, Katherine C.
    Murray, Christopher B.
    Stein, Aaron
    Doerk, Gregory S.
    Tsai, Esther H. R.
    Li, Ruipeng
    Freychet, Guillaume
    Zhernenkov, Mikhail
    Holman, Hoi-Ying N.
    Lee, Steven
    Chen, Liang
    Rotenberg, Eli
    Weber, Tobias
    Goc, Yannick Le
    Boehm, Martin
    Steffens, Paul
    Mutti, Paolo
    Sethian, James A.
    NATURE REVIEWS PHYSICS, 2021, 3 (10) : 685 - 697
  • [42] Traditional kriging versus modern Gaussian processes for large-scale mining data
    Christianson, Ryan B.
    Pollyea, Ryan M.
    Gramacy, Robert B.
    STATISTICAL ANALYSIS AND DATA MINING-AN ASA DATA SCIENCE JOURNAL, 2023, 16 (05): : 488 - 506
  • [43] Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities
    Marcus M. Noack
    Petrus H. Zwart
    Daniela M. Ushizima
    Masafumi Fukuto
    Kevin G. Yager
    Katherine C. Elbert
    Christopher B. Murray
    Aaron Stein
    Gregory S. Doerk
    Esther H. R. Tsai
    Ruipeng Li
    Guillaume Freychet
    Mikhail Zhernenkov
    Hoi-Ying N. Holman
    Steven Lee
    Liang Chen
    Eli Rotenberg
    Tobias Weber
    Yannick Le Goc
    Martin Boehm
    Paul Steffens
    Paolo Mutti
    James A. Sethian
    Nature Reviews Physics, 2021, 3 : 685 - 697
  • [44] Large-scale constrained Gaussian processes for shape-restricted function estimation
    Maatouk, Hassan
    Rulliere, Didier
    Bay, Xavier
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [45] LARGE-SCALE PERIODICITY AND GAUSSIAN FLUCTUATIONS
    DEKEL, A
    BLUMENTHAL, GR
    PRIMACK, JR
    STANHILL, D
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1992, 257 (04) : 715 - 730
  • [46] A Meshless and Matrix-Free Approach to Modeling Turbulent Fluid Flow
    Wilkinson, Matthew
    Villarreal, Javier
    Meade, Andrew
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (03): : 1373 - 1393
  • [47] A MATRIX-FREE APPROACH FOR SOLVING THE PARAMETRIC GAUSSIAN PROCESS MAXIMUM LIKELIHOOD PROBLEM
    Anitescu, Mihai
    Chen, Jie
    Wang, Lei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A240 - A262
  • [48] LARGE-SCALE PROCESSES ON THE SUN
    DOLGINOV, AZ
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1983, 47 (09): : 1693 - 1694
  • [49] LARGE-SCALE WEATHER PROCESSES
    不详
    NATURE, 1956, 177 (4499) : 113 - 115
  • [50] LARGE-SCALE PROCESSES ON MOON
    FIELDER, G
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 49 (01): : 302 - 302