Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities

被引:0
|
作者
Marcus M. Noack
Petrus H. Zwart
Daniela M. Ushizima
Masafumi Fukuto
Kevin G. Yager
Katherine C. Elbert
Christopher B. Murray
Aaron Stein
Gregory S. Doerk
Esther H. R. Tsai
Ruipeng Li
Guillaume Freychet
Mikhail Zhernenkov
Hoi-Ying N. Holman
Steven Lee
Liang Chen
Eli Rotenberg
Tobias Weber
Yannick Le Goc
Martin Boehm
Paul Steffens
Paolo Mutti
James A. Sethian
机构
[1] Lawrence Berkeley National Laboratory,The Center for Advanced Mathematics for Energy Research Applications (CAMERA)
[2] Lawrence Berkeley National Laboratory,Molecular Biophysics and Integrated Bioimaging Division (MBIB)
[3] Lawrence Berkeley National Laboratory,Berkeley Synchrotron Infrared Structural Biology Imaging Resource (BSISB)
[4] University of California,Bakar Institute
[5] San Francisco,National Synchrotron Light Source II (NSLS
[6] Brookhaven National Laboratory,II)
[7] Brookhaven National Laboratory,Center for Functional Nanomaterials (CFN)
[8] University of Pennsylvania,Department of Chemistry
[9] University of California,Department of Physics
[10] Lawrence Berkeley National Laboratory,Advanced Light Source (ALS)
[11] Institut Laue-Langevin (ILL),Department of Mathematics
[12] University of California,undefined
来源
Nature Reviews Physics | 2021年 / 3卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The execution and analysis of complex experiments are challenged by the vast dimensionality of the underlying parameter spaces. Although an increase in data-acquisition rates should allow broader querying of the parameter space, the complexity of experiments and the subtle dependence of the model function on input parameters remains daunting owing to the sheer number of variables. New strategies for autonomous data acquisition are being developed, with one promising direction being the use of Gaussian process regression (GPR). GPR is a quick, non-parametric and robust approximation and uncertainty quantification method that can be applied directly to autonomous data acquisition. We review GPR-driven autonomous experimentation and illustrate its functionality using real-world examples from large experimental facilities in the USA and France. We introduce the basics of a GPR-driven autonomous loop with a focus on Gaussian processes, and then shift the focus to the infrastructure that needs to be built around GPR to create a closed loop. Finally, the case studies we discuss show that Gaussian-process-based autonomous data acquisition is a widely applicable method that can facilitate the optimal use of instruments and facilities by enabling the efficient acquisition of high-value datasets.
引用
收藏
页码:685 / 697
页数:12
相关论文
共 50 条
  • [1] Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities
    Noack, Marcus M.
    Zwart, Petrus H.
    Ushizima, Daniela M.
    Fukuto, Masafumi
    Yager, Kevin G.
    Elbert, Katherine C.
    Murray, Christopher B.
    Stein, Aaron
    Doerk, Gregory S.
    Tsai, Esther H. R.
    Li, Ruipeng
    Freychet, Guillaume
    Zhernenkov, Mikhail
    Holman, Hoi-Ying N.
    Lee, Steven
    Chen, Liang
    Rotenberg, Eli
    Weber, Tobias
    Goc, Yannick Le
    Boehm, Martin
    Steffens, Paul
    Mutti, Paolo
    Sethian, James A.
    NATURE REVIEWS PHYSICS, 2021, 3 (10) : 685 - 697
  • [2] Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data
    Rodrigues, Filipe
    Pereira, Francisco C.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 95 : 636 - 651
  • [3] Traditional kriging versus modern Gaussian processes for large-scale mining data
    Christianson, Ryan B.
    Pollyea, Ryan M.
    Gramacy, Robert B.
    STATISTICAL ANALYSIS AND DATA MINING-AN ASA DATA SCIENCE JOURNAL, 2023, 16 (05): : 488 - 506
  • [4] Large-Scale Gaussian Processes via Alternating Projection
    Wu, Kaiwon
    Wenger, Jonathan
    Jones, Haydn
    Pleiss, Geoff
    Gardner, Jacob R.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [5] LARGE-SCALE DATA-ACQUISITION SYSTEMS
    ZIGLER, GL
    EXPERIMENTAL MECHANICS, 1978, 18 (05) : N40 - N40
  • [6] Large-scale versioning data acquisition and updating
    Tang, Luliang
    Li, Qingquan
    Hu, Li
    Li, Hanwu
    Zhu, Guobin
    Sun, Li
    GEOINFORMATICS 2006: GEOSPATIAL INFORMATION TECHNOLOGY, 2006, 6421
  • [7] A new large-scale data acquisition system
    Qin, JM
    Muller-Schloer, C
    Brehm, J
    ICEMI '97 - CONFERENCE PROCEEDINGS: THIRD INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, 1997, : 299 - 302
  • [8] A Scalable Gaussian Process for Large-Scale Periodic Data
    Li, Yongxiang
    Pu, Yuting
    Cheng, Changming
    Xiao, Qian
    TECHNOMETRICS, 2023, 65 (03) : 363 - 374
  • [9] Locally induced Gaussian processes for large-scale simulation experiments
    Cole, D. Austin
    Christianson, Ryan B.
    Gramacy, Robert B.
    STATISTICS AND COMPUTING, 2021, 31 (03)
  • [10] Locally induced Gaussian processes for large-scale simulation experiments
    D. Austin Cole
    Ryan B. Christianson
    Robert B. Gramacy
    Statistics and Computing, 2021, 31