Steel surface defect detection algorithm based on ESI-YOLOv8

被引:5
|
作者
Zhang, Xinrong [1 ]
Wang, Yanlong [1 ]
Fang, Huaisong [1 ]
机构
[1] Huaiyin Inst Technol, Sch Automat, Huaian, Peoples R China
基金
中国国家自然科学基金;
关键词
steel surface; ESI-YOLOv8; defect detection; loss function;
D O I
10.1088/2053-1591/ad46ec
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the precision of detecting defects on steel plate surfaces and diminish the incidences of false detection and leakage, the ESI-YOLOv8 algorithm is introduced. This algorithm introduces a novel EP module and integrates the large separation convolutional attention module and the spatial pyramid pooling module to propose the SPPF-LSKA module. Additionally, the original CIOU loss function is replaced with the INNER-CIOU loss function. The EP module minimizes redundant computations and model parameters to optimize efficiency and simultaneously increases the multi-scale fusion mechanism to expand the sensory field. The SPPF-LSKA module reduces computational complexity, accelerates model operation speed, and improves detection accuracy. Additionally, the INNER-CIOU loss function can improve detection speed and model accuracy by controlling the scale size of the auxiliary border.The results of the experiment indicate that, following the improvements made, the algorithm's detection accuracy has increased to 78%, which is 3.7% higher than the original YOLOv8. Furthermore, the model parameters were reduced, and the verification was conducted using the CoCo dataset, resulting in an average accuracy of 77.8%. In conclusion, the algorithm has demonstrated its ability to perform steel plate surface defect detection with efficiency and accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [22] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [23] YOLOv5-ACCOF Steel Surface Defect Detection Algorithm
    Xin, Haitao
    Song, Junpeng
    IEEE ACCESS, 2024, 12 : 157496 - 157506
  • [24] DGYOLOv8: An Enhanced Model for Steel Surface Defect Detection Based on YOLOv8
    Zhu, Guanlin
    Qi, Honggang
    Lv, Ke
    MATHEMATICS, 2025, 13 (05)
  • [25] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997
  • [26] Improved YOLOv8 Algorithm for Industrial Surface Defect Detection
    Su, Jia
    Jia, Ze
    Qin, Yichang
    Zhang, Jianyan
    Computer Engineering and Applications, 2024, 60 (14) : 187 - 196
  • [27] Improved Lightweight and Efficient FMG-YOLOv8s Algorithm for Steel Surface Defect Detection
    Liang, Liming
    Long, Pengwei
    Li, Yulin
    Computer Engineering and Applications, 61 (03): : 84 - 94
  • [28] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)
  • [29] Surface Defect Detection Algorithm for Strip Steel Based on Improved YOLOv7 Model
    Wang, Zhu
    Liu, Weisheng
    IAENG International Journal of Computer Science, 2024, 51 (03) : 308 - 316
  • [30] CFE-YOLOv8s: Improved YOLOv8s for Steel Surface Defect Detection
    Yang, Shuxin
    Xie, Yang
    Wu, Jianqing
    Huang, Weidong
    Yan, Hongsheng
    Wang, Jingyong
    Wang, Bi
    Yu, Xiangchun
    Wu, Qiang
    Xie, Fei
    ELECTRONICS, 2024, 13 (14)