Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave using machine learning

被引:0
|
作者
Cogill, Steven [1 ,2 ]
Nallamshetty, Shriram [1 ]
Fullenkamp, Natalie [1 ]
Heberer, Kent [1 ,2 ]
Lynch, Julie [3 ,4 ]
Lee, Kyung Min [3 ]
Aslan, Mihaela [5 ,6 ]
Shih, Mei-Chiung [1 ,7 ]
Lee, Jennifer S. [1 ,2 ,8 ,9 ]
机构
[1] VA Palo Alto Cooperat Studies Program Coordinating, Palo Alto, CA 94304 USA
[2] VA Palo Alto Hlth Care Syst, Big Data Sci Training Enhancement Program, Palo Alto, CA 94304 USA
[3] VA Salt Lake City Hlth Care Syst, VA Informat & Comp Infrastruct, Salt Lake City, UT USA
[4] Univ Utah, Sch Med, Dept Internal Med, Div Epidemiol, Salt Lake City, UT USA
[5] VA Connecticut Healthcare Syst, VA Clin Epidemiol Res Ctr CERC, West Haven, CT USA
[6] Yale Univ, Sch Med, Dept Med, New Haven, CT USA
[7] Stanford Univ, Sch Med, Dept Biomed Data Sci, Stanford, CA USA
[8] Stanford Univ, Sch Med, Dept Med Gerontol & Metab, Div Endocrinol, Stanford, CA 94305 USA
[9] Stanford Univ, Sch Med, Courtesy Epidemiol & Populat Hlth, Stanford, CA 94305 USA
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
NEUROSCIENCE;
D O I
10.1371/journal.pone.0290221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. The study objectives are to develop population-scale predictive models that: 1) identify predictors of adverse outcomes with Omicron surge SARS-CoV-2 infections, and 2) predict the impact of prioritized vaccination of high-risk groups for said outcome. We prepared a retrospective longitudinal observational study of a national cohort of 172,814 patients in the U.S. Veteran Health Administration who tested positive for SARS-CoV-2 from January 15 to August 15, 2022. We utilized sociodemographic characteristics, comorbidities, and vaccination status, at time of testing positive for SARS-CoV-2 to predict hospitalization, escalation of care (high-flow oxygen, mechanical ventilation, vasopressor use, dialysis, or extracorporeal membrane oxygenation), and death within 30 days. Machine learning models demonstrated that advanced age, high comorbidity burden, lower body mass index, unvaccinated status, and oral anticoagulant use were the important predictors of hospitalization and escalation of care. Similar factors predicted death. However, anticoagulant use did not predict mortality risk. The all-cause death model showed the highest discrimination (Area Under the Curve (AUC) = 0.903, 95% Confidence Interval (CI): 0.895, 0.911) followed by hospitalization (AUC = 0.822, CI: 0.818, 0.826), then escalation of care (AUC = 0.793, CI: 0.784, 0.805). Assuming a vaccine efficacy range of 70.8 to 78.7%, our simulations projected that targeted prevention in the highest risk group may have reduced 30-day hospitalization and death in more than 2 of 5 unvaccinated patients.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods
    Liu, Zhiyang
    Meng, Mei
    Ding, ShiJian
    Zhou, XiaoChao
    Feng, KaiYan
    Huang, Tao
    Cai, Yu-Dong
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [32] Reinfection and Risk Factors of SARS-CoV-2 during an Omicron Wave 2022 in Shanghai
    Wang, Pei Qin
    Wang, Xiao Hang
    Wang, Jian
    Shi, Zhi Wen
    Chu, Dong Mei
    Wang, Zhi Fei
    Zhang, Mu Bai
    Liu, Wei
    Zhou, Zi Jie
    Xie, Wei Fen
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES, 2024, 37 (02) : 204 - 209
  • [33] Clinical and immunological characteristics of prolonged SARS-CoV-2 Omicron infection in hematologic disease
    Daisuke Ikeda
    Ami Fukumoto
    Yuka Uesugi
    Rikako Tabata
    Daisuke Miura
    Kentaro Narita
    Masami Takeuchi
    Tomohisa Watari
    Yoshihito Otsuka
    Kosei Matsue
    Blood Cancer Journal, 13
  • [34] Clinical and immunological characteristics of prolonged SARS-CoV-2 Omicron infection in hematologic disease
    Ikeda, Daisuke
    Fukumoto, Ami
    Uesugi, Yuka
    Tabata, Rikako
    Miura, Daisuke
    Narita, Kentaro
    Takeuchi, Masami
    Watari, Tomohisa
    Otsuka, Yoshihito
    Matsue, Kosei
    BLOOD CANCER JOURNAL, 2023, 13 (01)
  • [35] Course and clinical severity of the SARS-CoV-2 Omicron variant infection in Tianjin, China
    Ren, Yi
    Shi, Lixia
    Xie, Yi
    Wang, Chao
    Zhang, Wenxin
    Wang, Feifei
    Sun, Haibai
    Huang, Lijun
    Wu, Yuanrong
    Xing, Zhiheng
    Ren, Wenjuan
    Heinrich, Joachim
    Wu, Qi
    Pei, Zhengcun
    MEDICINE, 2023, 102 (38) : E34669
  • [36] Clinical manifestations of SARS-CoV-2 Omicron infection is associated with the stage of liver cirrhosis
    Fengjiao Wang
    Lingxiao Zhu
    Yanfei Chen
    Lanjuan Li
    BMC Infectious Diseases, 25 (1)
  • [37] Clinical characteristics of SARS-CoV-2 Omicron variant infection in children with acute leukemia
    Pengli Huang
    Henghui Chang
    Ruidong Zhang
    Ying Wu
    Peijing Qi
    Yaguang Peng
    Xueling Zheng
    Huyong Zheng
    Annals of Hematology, 2024, 103 : 729 - 736
  • [38] Commentary: Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2 by a machine learning approach
    Noemi Salmeri
    Massimo Candiani
    Paolo Ivo Cavoretto
    BMC Pregnancy and Childbirth, 23
  • [39] Clinical characteristics of SARS-CoV-2 Omicron variant infection in children with acute leukemia
    Huang, Pengli
    Chang, Henghui
    Zhang, Ruidong
    Wu, Ying
    Qi, Peijing
    Peng, Yaguang
    Zheng, Xueling
    Zheng, Huyong
    ANNALS OF HEMATOLOGY, 2024, 103 (03) : 729 - 736
  • [40] Experimental Infection of Mink with SARS-COV-2 Omicron Variant and Subsequent Clinical Disease
    Virtanen, Jenni
    Aaltonen, Kirsi
    Kegler, Kristel
    Venkat, Vinaya
    Niamsap, Thanakorn
    Kareinen, Lauri
    Malmgren, Rasmus
    Kivela, Olga
    Atanasova, Nina
    Osterlund, Pamela
    Smura, Teemu
    Sukura, Antti
    Strandin, Tomas
    Dutra, Lara
    Vapalahti, Olli
    Nordgren, Heli
    Kant, Ravi
    Sironen, Tarja
    EMERGING INFECTIOUS DISEASES, 2022, 28 (06) : 1286 - 1288