Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave using machine learning

被引:0
|
作者
Cogill, Steven [1 ,2 ]
Nallamshetty, Shriram [1 ]
Fullenkamp, Natalie [1 ]
Heberer, Kent [1 ,2 ]
Lynch, Julie [3 ,4 ]
Lee, Kyung Min [3 ]
Aslan, Mihaela [5 ,6 ]
Shih, Mei-Chiung [1 ,7 ]
Lee, Jennifer S. [1 ,2 ,8 ,9 ]
机构
[1] VA Palo Alto Cooperat Studies Program Coordinating, Palo Alto, CA 94304 USA
[2] VA Palo Alto Hlth Care Syst, Big Data Sci Training Enhancement Program, Palo Alto, CA 94304 USA
[3] VA Salt Lake City Hlth Care Syst, VA Informat & Comp Infrastruct, Salt Lake City, UT USA
[4] Univ Utah, Sch Med, Dept Internal Med, Div Epidemiol, Salt Lake City, UT USA
[5] VA Connecticut Healthcare Syst, VA Clin Epidemiol Res Ctr CERC, West Haven, CT USA
[6] Yale Univ, Sch Med, Dept Med, New Haven, CT USA
[7] Stanford Univ, Sch Med, Dept Biomed Data Sci, Stanford, CA USA
[8] Stanford Univ, Sch Med, Dept Med Gerontol & Metab, Div Endocrinol, Stanford, CA 94305 USA
[9] Stanford Univ, Sch Med, Courtesy Epidemiol & Populat Hlth, Stanford, CA 94305 USA
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
NEUROSCIENCE;
D O I
10.1371/journal.pone.0290221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. The study objectives are to develop population-scale predictive models that: 1) identify predictors of adverse outcomes with Omicron surge SARS-CoV-2 infections, and 2) predict the impact of prioritized vaccination of high-risk groups for said outcome. We prepared a retrospective longitudinal observational study of a national cohort of 172,814 patients in the U.S. Veteran Health Administration who tested positive for SARS-CoV-2 from January 15 to August 15, 2022. We utilized sociodemographic characteristics, comorbidities, and vaccination status, at time of testing positive for SARS-CoV-2 to predict hospitalization, escalation of care (high-flow oxygen, mechanical ventilation, vasopressor use, dialysis, or extracorporeal membrane oxygenation), and death within 30 days. Machine learning models demonstrated that advanced age, high comorbidity burden, lower body mass index, unvaccinated status, and oral anticoagulant use were the important predictors of hospitalization and escalation of care. Similar factors predicted death. However, anticoagulant use did not predict mortality risk. The all-cause death model showed the highest discrimination (Area Under the Curve (AUC) = 0.903, 95% Confidence Interval (CI): 0.895, 0.911) followed by hospitalization (AUC = 0.822, CI: 0.818, 0.826), then escalation of care (AUC = 0.793, CI: 0.784, 0.805). Assuming a vaccine efficacy range of 70.8 to 78.7%, our simulations projected that targeted prevention in the highest risk group may have reduced 30-day hospitalization and death in more than 2 of 5 unvaccinated patients.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Burden of Pediatric SARS-CoV-2 Hospitalizations during the Omicron Wave in Germany
    Doenhardt, Maren
    Gano, Christin
    Sorg, Anna-Lisa
    Diffloth, Natalie
    Tenenbaum, Tobias
    von Kries, Rudiger
    Berner, Reinhard
    Armann, Jakob P.
    VIRUSES-BASEL, 2022, 14 (10):
  • [22] Children With Croup and SARS-CoV-2 Infection During the Large Outbreak of Omicron
    Murata, Yo
    Tomari, Kouki
    Matsuoka, Takashi
    PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2022, 41 (05) : E249 - E249
  • [23] Pregnancy outcomes with confirmed SARS-CoV-2 infection during first wave: A review
    Memon, Farah Naz
    Naz, Saima
    Rahat, Tayyaba
    JOURNAL OF THE PAKISTAN MEDICAL ASSOCIATION, 2022, 72 (12) : 2503 - 2508
  • [24] Outcomes and Effects of Vaccination on Sars-Cov-2 Omicron Infection in Kidney Transplant Recipients
    Chiu, Hsien-Fu
    Tsai, Shang-Feng
    Wu, Ming-Ju
    Yu, Tung-Min
    Chuang, Ya-Wen
    Chen, Cheng-Hsu
    TRANSPLANTATION PROCEEDINGS, 2023, 55 (04) : 820 - 823
  • [25] Seizure classifications in pediatric SARS-CoV-2 Omicron infection
    Tang, C-M
    Kuo, C-Y
    Yen, C-W
    Lin, J-J
    Hsieh, Y-C
    Hsia, S-H
    Chan, O-W
    Lee, E-P
    Hung, P-C
    Chiu, C-H
    Wang, H-S
    Lin, K-L
    EPILEPSIA, 2023, 64 : 161 - 161
  • [26] SARS-CoV-2 dual infection with Delta and Omicron variants in an
    Abroi, Aare
    Talas, Ulvi Gerst
    Pauskar, Merit
    Shablinskaja, Arina
    Reisberg, Tuuli
    Niglas, Heiki
    Pall, Taavi
    Nelis, Mari
    Tagen, Ingrid
    Soodla, Pilleriin
    Lutsar, Irja
    Huik, Kristi
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 124 : 41 - 44
  • [27] Plasma metabolomic characterization of SARS-CoV-2 Omicron infection
    Li, Xue
    Liu, Yimeng
    Xu, Guiying
    Xie, Yi
    Wang, Ximo
    Wu, Junping
    Chen, Huaiyong
    CELL DEATH & DISEASE, 2023, 14 (04)
  • [28] Plasma metabolomic characterization of SARS-CoV-2 Omicron infection
    Xue Li
    Yimeng Liu
    Guiying Xu
    Yi Xie
    Ximo Wang
    Junping Wu
    Huaiyong Chen
    Cell Death & Disease, 14
  • [29] Myeloencephalitis as the only presentation of Omicron SARS-CoV-2 infection
    Dang, Tinh Quang
    La, Duc Thien
    Tran, Tai Ngoc
    BMJ CASE REPORTS, 2022, 15 (11)
  • [30] Mucosal IgA against SARS-CoV-2 Omicron Infection
    Zuo, Fanglei
    Marcotte, Harold
    Hammarstrom, Lennart
    Pan-Hammarstrom, Qiang
    NEW ENGLAND JOURNAL OF MEDICINE, 2022, 387 (21):