Impulsive Control Discrete Fractional Neural Networks in Product Form Design: Practical Mittag-Leffler Stability Criteria

被引:0
|
作者
Stamov, Trayan [1 ]
机构
[1] Tech Univ Sofia, Dept Engn Design, Sofia 1000, Bulgaria
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 09期
关键词
neural networks; discrete fractional differences; product form design; impulsive control; practical stability; ORDER; MODEL; DELAY;
D O I
10.3390/app14093705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The planning, regulation and effectiveness of the product design process depend on various characteristics. Recently, bio-inspired collective intelligence approaches have been applied in this process in order to create more appealing product forms and optimize the design process. In fact, the use of neural network models in product form design analysis is a complex process, in which the type of network has to be determined, as well as the structure of the network layers and the neurons in them; the connection coefficients, inputs and outputs have to be explored; and the data have to be collected. In this paper, an impulsive discrete fractional neural network modeling approach is introduced for product design analysis. The proposed model extends and complements several existing integer-order neural network models to the generalized impulsive discrete fractional-order setting, which is a more flexible mechanism to study product form design. Since control and stability methods are fundamental in the construction and practical significance of a neural network model, appropriate impulsive controllers are designed, and practical Mittag-Leffler stability criteria are proposed. The Lyapunov function strategy is applied in providing the stability criteria and their efficiency is demonstrated via examples and a discussion. The established examples also illustrate the role of impulsive controllers in stabilizing the behavior of the neuronal states. The proposed modeling approach and the stability results are applicable to numerous industrial design tasks in which multi-agent systems are implemented.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Mittag-Leffler synchronization for impulsive fractional-order bidirectional associative memory neural networks via optimal linear feedback control
    Lin, Jiazhe
    Xu, Rui
    Li, Liangchen
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 207 - 226
  • [42] Mittag-Leffler Synchronization of Generalized Fractional-Order Reaction-Diffusion Networks Via Impulsive Control
    Cao, Yang
    Dharani, S.
    Sivakumar, M.
    Cader, Andrzej
    Nowicki, Robert
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2025, 15 (01) : 25 - 36
  • [43] MITTAG-LEFFLER STABILITY ANALYSIS OF TEMPERED FRACTIONAL NEURAL NETWORKS WITH SHORT MEMORY AND VARIABLE-ORDER
    Gu, Chuan-Yun
    Zheng, Feng-Xia
    Shiri, Babak
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (08)
  • [44] Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments
    Wu, Ailong
    Liu, Ling
    Huang, Tingwen
    Zeng, Zhigang
    NEURAL NETWORKS, 2017, 85 : 118 - 127
  • [45] Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions
    Liu, Pingping
    Nie, Xiaobing
    Liang, Jinling
    Cao, Jinde
    NEURAL NETWORKS, 2018, 108 : 452 - 465
  • [46] Delayed Reaction-Diffusion Cellular Neural Networks of Fractional Order: Mittag-Leffler Stability and Synchronization
    Stamov, Ivanka M.
    Simeonov, Stanislav
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (01):
  • [47] Exponentially Stable Periodic Oscillation and Mittag-Leffler Stabilization for Fractional-Order Impulsive Control Neural Networks With Piecewise Caputo Derivatives
    Zhang, Tianwei
    Zhou, Jianwen
    Liao, Yongzhi
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 9670 - 9683
  • [48] Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks
    Chen, Shenglong
    Li, Hong-Li
    Bao, Haibo
    Zhang, Long
    Jiang, Haijun
    Li, Zhiming
    NEUROCOMPUTING, 2022, 511 : 290 - 298
  • [49] MITTAG-LEFFLER STABILITY FOR NON-INSTANTANEOUS IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2019, 69 (03) : 583 - 598
  • [50] Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Kao, Yonggui
    Zhang, Long
    Jiang, Haijun
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 433