MITTAG-LEFFLER STABILITY ANALYSIS OF TEMPERED FRACTIONAL NEURAL NETWORKS WITH SHORT MEMORY AND VARIABLE-ORDER

被引:15
|
作者
Gu, Chuan-Yun [1 ]
Zheng, Feng-Xia [1 ,2 ]
Shiri, Babak [3 ]
机构
[1] Sichuan Univ Arts & Sci, Sch Math, Dazhou 635000, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
关键词
Mittag-Leffler Stability; Tempered Fractional Neural Networks; Short Memory; Variable-Order Tempered Fractional Neural Networks; DIFFERENTIAL-EQUATIONS; ALGEBRAIC EQUATIONS; NUMERICAL-METHOD; ALGORITHM; SYSTEM;
D O I
10.1142/S0218348X21400296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class of tempered fractional neural networks is proposed in this paper. Stability conditions for tempered fractional neural networks are provided by using Banach fixed point theorem. Attractivity and Mittag-Leffler stability are given. In order to show the efficiency and convenience of the method used, tempered fractional neural networks with and without delay are discussed, respectively. Furthermore, short memory and variable-order tempered fractional neural networks are proposed under the global conditions. Finally, two numerical examples are used to demonstrate the theoretical results.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks
    Yang, Xujun
    Li, Chuandong
    Song, Qiankun
    Huang, Tingwen
    Chen, Xiaofeng
    NEUROCOMPUTING, 2016, 207 : 276 - 286
  • [2] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [3] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [4] Tempered Mittag-Leffler Stability of Tempered Fractional Dynamical Systems
    Deng, Jingwei
    Ma, Weiyuan
    Deng, Kaiying
    Li, Yingxing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [5] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [6] Numerical solution of fractal-fractional Mittag-Leffler differential equations with variable-order using artificial neural networks
    Zuniga-Aguilar, C. J.
    Gomez-Aguilar, J. F.
    Romero-Ugalde, H. M.
    Escobar-Jimenez, R. F.
    Fernandez-Anaya, G.
    Alsaadi, Fawaz E.
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2669 - 2682
  • [7] Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks
    Zuniga-Aguilar, C. J.
    Romero-Ugalde, H. M.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Valtierra-Rodriguez, M.
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 382 - 403
  • [8] Mittag-Leffler stability and application of delayed fractional-order competitive neural networks
    Zhang, Fanghai
    Huang, Tingwen
    Wu, Ailong
    Zeng, Zhigang
    NEURAL NETWORKS, 2024, 179
  • [9] Globally β-Mittag-Leffler stability and β-Mittag-Leffler convergence in Lagrange sense for impulsive fractional-order complex-valued neural networks
    Li, Hui
    Kao, Yonggui
    Li, Hong-Li
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [10] Variable-order time-fractional diffusion equation with Mittag-Leffler kernel: regularity analysis and uniqueness of determining variable order
    Guo, Xu
    Zheng, Xiangcheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):