Deep random forest with ferroelectric analog content addressable memory

被引:2
|
作者
Yin, Xunzhao [1 ,2 ]
Mueller, Franz [3 ]
Laguna, Ann Franchesca [4 ]
Li, Chao [1 ]
Huang, Qingrong [1 ]
Shi, Zhiguo [1 ,2 ]
Lederer, Maximilian [3 ]
Laleni, Nellie [3 ]
Deng, Shan [5 ]
Zhao, Zijian [5 ]
Imani, Mohsen [6 ]
Shi, Yiyu [5 ]
Niemier, Michael [5 ]
Hu, Xiaobo Sharon [5 ]
Zhuo, Cheng [1 ,2 ]
Kaempfe, Thomas [3 ]
Ni, Kai [5 ]
机构
[1] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
[2] Key Lab CS&AUS Zhejiang Prov, Hangzhou, Peoples R China
[3] Fraunhofer IPMS, Dresden, Germany
[4] De La Salle Univ, Manila, Philippines
[5] Univ Notre Dame, Notre Dame, IN 46614 USA
[6] Univ Calif Irvine, Irvine, CA 92697 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 23期
关键词
INFERENCE; EDGE;
D O I
10.1126/sciadv.adk8471
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, interpretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in realizing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations show that the FeFET ACAM DRF accelerator achieves similar to 10(6)x/10x and similar to 10(6)x/2.5x improvements in energy and latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Design consideration of ferroelectric field-effect-transistors with metal-ferroelectric-metal capacitor for ternary content addressable memory
    Yi, Boram
    Hwang, Junghyeon
    Oh, Tae Woo
    Jeon, Sanghun
    Jung, Seong-Ook
    Yang, Ji-Woon
    SOLID-STATE ELECTRONICS, 2023, 206
  • [32] A Scalable Design of Multi-Bit Ferroelectric Content Addressable Memory for Data-Centric Computing
    Li, Chao
    Mueller, Franz
    Ali, Tarek
    Olivo, Ricardo
    Imani, Mohsen
    Deng, Shan
    Zhuo, Cheng
    Kaempfe, Thomas
    Yin, Xunzhao
    Ni, Kai
    2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [33] Ferroelectric Content-Addressable Memory Cells with IGZO Channel: Impact of Retention Degradation on the Multibit Operation
    Sk, Masud Rana
    Thunder, Sunanda
    Lehninger, David
    Raffel, Yannick
    Lederer, Maximilian
    Jank, Michael P. M.
    Kaempfe, Thomas
    De, Sourav
    Chakrabarti, Bhaswar
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (02) : 812 - 820
  • [34] Energy Efficient Data Search Design and Optimization Based on A Compact Ferroelectric FET Content Addressable Memory
    Cai, Jiahao
    Imani, Mohsen
    Ni, Kai
    Zhang, Grace Li
    Li, Bing
    Schlichtmann, Ulf
    Zhuo, Cheng
    Yin, Xunzhao
    PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 751 - 756
  • [35] Highly Scaled InGaZnO Ferroelectric Field-Effect Transistors and Ternary Content-Addressable Memory
    Sun, Chen
    Han, Kaizhen
    Samanta, Subhranu
    Kong, Qiwen
    Zhang, Jishen
    Xu, Haiwen
    Wang, Xinke
    Kumar, Annie
    Wang, Chengkuan
    Zheng, Zijie
    Yin, Xunzhao
    Ni, Kai
    Gong, Xiao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (09) : 5262 - 5269
  • [36] Multiple-valued content-addressable memory using metal-ferroelectric-semiconductor FETs
    Hanyu, T
    Kimura, H
    Kameyama, M
    1999 29TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1999, : 30 - 35
  • [37] A flexible multiport content-addressable memory
    Kumaki, Takeshi
    Iwai, Keisuke
    Kurokawa, Takakazu
    Systems and Computers in Japan, 2006, 37 (11): : 57 - 67
  • [38] Content-addressable memory with spiking neurons
    Mueller, R
    Herz, AVM
    PHYSICAL REVIEW E, 1999, 59 (03): : 3330 - 3338
  • [39] A Content Addressable Memory Using Josephson Junctions
    Morisue, Mititada
    Kaneko, Masayuki
    Hosoya, Hiroo
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1991, 1 (01) : 48 - 53
  • [40] Precharge free dynamic content addressable memory
    Mahendra, T. V.
    Hussain, S. W.
    Mishra, S.
    Dandapat, A.
    ELECTRONICS LETTERS, 2018, 54 (09) : 556 - 557