Clinical implementation and evaluation of deep learning-assisted automatic radiotherapy treatment planning for lung cancer

被引:0
|
作者
Wang, Ningyu [1 ]
Fan, Jiawei [2 ,3 ,4 ,5 ]
Xu, Yingjie [1 ]
Yan, Lingling [1 ]
Chen, Deqi [1 ]
Wang, Wenqing [1 ]
Men, Kuo [1 ]
Dai, Jianrong [1 ]
Liu, Zhiqiang [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc, Beijing 100021, Peoples R China
[2] Fudan Univ, Shanghai Canc Ctr, Dept Radiat Oncol, Shanghai 200032, Peoples R China
[3] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai 200032, Peoples R China
[4] Shanghai Clin Res Ctr Radiat Oncol, Shanghai, Peoples R China
[5] Shanghai Key Lab Radiat Oncol, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic planning; Deep learning; VMAT; Expert review; Lung cancer; MODULATED RADIATION-THERAPY; DOSE PREDICTION; QUALITY;
D O I
10.1016/j.ejmp.2024.104492
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of the study is to investigate the clinical application of deep learning (DL)-assisted automatic radiotherapy planning for lung cancer. Methods: A DL model was developed for predicting patient-specific doses, trained and validated on a dataset of 235 patients with diverse target volumes and prescriptions. The model was integrated into clinical workflow with DL-predicted objective functions. The automatic plans were retrospectively designed for additional 50 treated manual volumetric modulated arc therapy (VMAT) plans. A comparison was made between automatic and manual plans in terms of dosimetric indexes, monitor units (MUs) and planning time. Plan quality metric (PQM) encompassing these indexes was evaluated, with higher PQM values indicating superior plan quality. Qualitative evaluations of two plans were conducted by four reviewers. Results: The PQM score was 40.7 f 13.1 for manual plans and 40.8 f 13.5 for automatic plans (P = 0.75). Compared to manual plans, the targets coverage and homogeneity of automatic plans demonstrated no significant difference. Manual plans exhibited better sparing for lung in V5 (difference: 1.8 f 4.2 %, P = 0.02), whereas automatic plans showed enhanced sparing for heart in V30 (difference: 1.4 f 4.7 %, P = 0.02) and for spinal cord in Dmax (difference: 0.7 f 4.7 Gy, P = 0.04). The planning time and MUs of automatic plans were significantly reduced by 70.5 f 20.0 min and 97.4 f 82.1. Automatic plans were deemed acceptable in 88 % of the reviews (176/200). Conclusions: The DL-assisted approach for lung cancer notably decreased planning time and MUs, while demonstrating comparable or superior quality relative to manual plans. It has the potential to provide benefit to lung cancer patients.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy
    Cha, Elaine
    Elguindi, Sharif
    Onochie, Ifeanyirochukwu
    Gorovets, Daniel
    Deasy, Joseph O.
    Zelefsky, Michael
    Gillespie, Erin F.
    RADIOTHERAPY AND ONCOLOGY, 2021, 159 : 1 - 7
  • [32] EPID Assisted Dosimetric Evaluation of Treatment Planning Using Helical or 4D CT in Stereotactic Radiotherapy of Lung Cancer
    Liao, Y.
    Turian, J.
    Chu, J.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [33] Treatment planning for heavy ion radiotherapy:: clinical implementation and application
    Jäkel, O
    Krämer, M
    Karger, CP
    Debus, J
    PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (04): : 1101 - 1116
  • [34] Extensive clinical testing of Deep Learning Segmentation models for thorax and breast cancer radiotherapy planning
    Mikalsen, Stine Gyland
    Skjotskift, Torleiv
    Flote, Vidar Gordon
    Hamalainen, Niklas Petteri
    Heydari, Mojgan
    Ryden-Eilertsen, Karsten
    ACTA ONCOLOGICA, 2023, 62 (10) : 1184 - 1193
  • [35] Clinical implementation of deep learning robust IMPT planning in oropharyngeal cancer patients: A blinded clinical study
    van Bruggen, Ilse G.
    van Dijk, Marije
    Brinkman-Akker, Minke J.
    Lofman, Fredrik
    Langendijk, Johannes A.
    Both, Stefan
    Korevaar, E. W.
    RADIOTHERAPY AND ONCOLOGY, 2024, 200
  • [36] Clinical Implementation and Evaluation of an Integrated Automatic Contouring and VMAT Planning Workflow for Postoperative Breast Cancer
    Zhang, J.
    Wang, W.
    You, J.
    Qian, S.
    Wang, J.
    Jiang, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E205 - E206
  • [37] Clinical evaluation of a deep learning model for segmentation of target volumes in breast cancer radiotherapy
    Buelens, P.
    Willems, S.
    Vandewinckele, L.
    Crijns, W.
    Maes, F.
    Weltens, C. G.
    RADIOTHERAPY AND ONCOLOGY, 2022, 171 : 84 - 90
  • [38] Deep Learning-Assisted Automatic Diagnosis of Anterior Cruciate Ligament Tear in Knee Magnetic Resonance Images
    Wang, Xuanwei
    Wu, Yuanfeng
    Li, Jiafeng
    Li, Yifan
    Xu, Sanzhong
    TOMOGRAPHY, 2024, 10 (08) : 1263 - 1276
  • [39] Machine Learning-Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
    Tanos, Rita
    Tosato, Guillaume
    Otandault, Amaelle
    Dache, Zahra Al Amir
    Lasorsa, Laurence Pique
    Tousch, Geoffroy
    El Messaoudi, Safia
    Meddeb, Romain
    Assaf, Mona Diab
    Ychou, Marc
    Du Manoir, Stanislas
    Pezet, Denis
    Gagniere, Johan
    Colombo, Pierre-Emmanuel
    Jacot, William
    Assenat, Eric
    Dupuy, Marie
    Adenis, Antoine
    Mazard, Thibault
    Mollevi, Caroline
    Sayagues, Jose Maria
    Colinge, Jacques
    Thierry, Alain R.
    ADVANCED SCIENCE, 2020, 7 (18)
  • [40] Clinical implementation of the machine learning-based automated treatment planning tool for whole breast radiotherapy
    Yoo, Sua
    Sheng, Yang
    Blitzblau, Rachel
    Catalano, Suzanne
    Morrison, Jay
    O'Neill, Leigh
    Yin, Fangfang
    Wu, Q. Jackie
    CANCER RESEARCH, 2020, 80 (04)