CLE Diffusion: Controllable Light Enhancement Diffusion Model

被引:16
|
作者
Yin, Yuyang [1 ]
Xu, Dejia [2 ]
Tan, Chuangchuang [1 ]
Liu, Ping [3 ]
Zhao, Yao [1 ]
Wei, Yunchao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing Key Lab Adv Informat Sci & Network, Beijing, Peoples R China
[2] Univ Texas Austin, VITA Grp, Austin, TX USA
[3] ASTAR, IHPC, Ctr Frontier AI Res, Singapore, Singapore
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
关键词
image processing; low light image enhancement; diffusion model; ILLUMINATION; RETINEX;
D O I
10.1145/3581783.3612145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low light enhancement has gained increasing importance with the rapid development of visual creation and editing. However, most existing enhancement algorithms are designed to homogeneously increase the brightness of images to a pre-defined extent, limiting the user experience. To address this issue, we propose Controllable Light Enhancement Diffusion Model, dubbed CLE Diffusion, a novel diffusion framework to provide users with rich controllability. Built with a conditional diffusion model, we introduce an illumination embedding to let users control their desired brightness level. Additionally, we incorporate the Segment-Anything Model (SAM) to enable user-friendly region controllability, where users can click on objects to specify the regions they wish to enhance. Extensive experiments demonstrate that CLE Diffusion achieves competitive performance regarding quantitative metrics, qualitative results, and versatile controllability. Project page: https://yuyangyin.github.io/CLEDiffusion/
引用
收藏
页码:8145 / 8156
页数:12
相关论文
共 50 条
  • [31] A Study on Speech Enhancement Based on Diffusion Probabilistic Model
    Lu, Yen-Ju
    Tsao, Yu
    Watanabe, Shinji
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 659 - 666
  • [32] Adaptive coupled diffusion model for vessel image enhancement
    Zhao, Yongqiang
    Li, Minglu
    Ni, Jun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2011, 6 (03) : 160 - 167
  • [33] SeisResoDiff: Seismic resolution enhancement based on a diffusion model
    Zhang, Hao-Ran
    Liu, Yang
    Sun, Yu-Hang
    Chen, Gui
    PETROLEUM SCIENCE, 2024, 21 (05) : 3166 - 3188
  • [34] Diffusion enhancement model and its application in peak detection
    Li, Jun
    Li, Yuanlu
    Zhao, Weijing
    Jiang, Min
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 189 : 130 - 137
  • [35] Conditional Denoising Diffusion Implicit Model for Speech Enhancement
    Yang C.
    Yu X.
    Huang S.
    International Journal of Speech Technology, 2024, 27 (01) : 201 - 209
  • [36] A Constrained Diffusion Model for Deep GPR Image Enhancement
    Lan, Tian
    Luo, Xi
    Yang, Xiaopeng
    Gong, Junbo
    Li, Xinjue
    Qu, Xiaodong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [37] A Generative Model for Resolution Enhancement of Diffusion MRI Data
    Yap, Pew-Thian
    An, Hongyu
    Chen, Yasheng
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT III, 2013, 8151 : 527 - 534
  • [38] Relation-Aware Diffusion Model for Controllable Poster Layout Generation
    Li, Fengheng
    Liu, An
    Feng, Wei
    Zhu, Honghe
    Li, Yaoyu
    Zhang, Zheng
    Lv, Jingjing
    Zhu, Xin
    Shen, Junjie
    Lin, Zhangang
    Shao, Jingping
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1249 - 1258
  • [39] Light Diffusion
    Janacs, Christoph
    LITERATUR UND KRITIK, 2021, (555): : 90 - 94
  • [40] CRoSS: Diffusion Model Makes Controllable, Robust and Secure Image Steganography
    Yu, Jiwen
    Zhang, Xuanyu
    Xu, Youmin
    Zhang, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,