CLE Diffusion: Controllable Light Enhancement Diffusion Model

被引:16
|
作者
Yin, Yuyang [1 ]
Xu, Dejia [2 ]
Tan, Chuangchuang [1 ]
Liu, Ping [3 ]
Zhao, Yao [1 ]
Wei, Yunchao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing Key Lab Adv Informat Sci & Network, Beijing, Peoples R China
[2] Univ Texas Austin, VITA Grp, Austin, TX USA
[3] ASTAR, IHPC, Ctr Frontier AI Res, Singapore, Singapore
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
关键词
image processing; low light image enhancement; diffusion model; ILLUMINATION; RETINEX;
D O I
10.1145/3581783.3612145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low light enhancement has gained increasing importance with the rapid development of visual creation and editing. However, most existing enhancement algorithms are designed to homogeneously increase the brightness of images to a pre-defined extent, limiting the user experience. To address this issue, we propose Controllable Light Enhancement Diffusion Model, dubbed CLE Diffusion, a novel diffusion framework to provide users with rich controllability. Built with a conditional diffusion model, we introduce an illumination embedding to let users control their desired brightness level. Additionally, we incorporate the Segment-Anything Model (SAM) to enable user-friendly region controllability, where users can click on objects to specify the regions they wish to enhance. Extensive experiments demonstrate that CLE Diffusion achieves competitive performance regarding quantitative metrics, qualitative results, and versatile controllability. Project page: https://yuyangyin.github.io/CLEDiffusion/
引用
收藏
页码:8145 / 8156
页数:12
相关论文
共 50 条
  • [21] Anomalous diffusion and enhancement of diffusion in a vibrational motor
    Guo, Wei
    Du, Lu-Chun
    Mei, Dong-Cheng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [22] Pyramid Diffusion Models for Low-light Image Enhancement
    Zhou, Dewei
    Yang, Zongxin
    Yang, Yi
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1795 - 1803
  • [23] Surface textured molybdenum zinc oxide for light diffusion enhancement
    Hsu, Ching-Ming
    Lin, Hon-Bin
    Wu, Wen-Tuan
    THIN SOLID FILMS, 2009, 517 (13) : 3717 - 3720
  • [24] Low-light image enhancement by diffusion pyramid with residuals
    Kim, Wonjun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 81
  • [25] Evaluation of a light diffusion model for dot gain
    Gustavson, S
    Kruse, B
    TAGA, 1996 PROCEEDINGS - DISSEMINATING GRAPHIC ARTS RESEARCH INTERNATIONALLY SINCE 1948, 1996, : 58 - 68
  • [26] Diffusion model for ultrasound-modulated light
    Hollmann, Joseph L.
    Horstmeyer, Roarke
    Yang, Changhuei
    DiMarzio, Charles A.
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (03)
  • [27] LIGHT DIFFUSION COEFFICIENT IN SHEETS OF MODEL FIBER
    RENNEL, J
    SVENSK PAPPERSTIDNING-NORDISK CELLULOSA, 1968, 71 (02): : 58 - &
  • [28] SeisResoDiff: Seismic resolution enhancement based on a diffusion model
    State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum , Beijing
    102249, China
    不详
    102249, China
    不详
    834000, China
    不详
    163318, China
    Petrol. Sci., 2024, 5 (3166-3188):
  • [29] Diffusion enhancement of Brownian motors revealed by a solvable model
    Kanada, Ryo
    Shinagawa, Ryota
    Sasaki, Kazuo
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [30] SeisResoDiff: Seismic resolution enhancement based on a diffusion model
    HaoRan Zhang
    Yang Liu
    YuHang Sun
    Gui Chen
    Petroleum Science, 2024, 21 (05) : 3166 - 3188