Data Augmented Graph Convolutional Network for Hyperspectral Image Classification

被引:0
|
作者
Yang, Chunlan [1 ]
Xue, Dawei [1 ]
机构
[1] Bengbu Univ, Bengbu 233030, Peoples R China
关键词
Graph convolutional network; hyperspectral image classification; data augmented; spectral-spatial graph;
D O I
10.1145/3663976.3664013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Labeled hyperspectral images (HSIs) data is hard to access, which becomes a great difficulty for the classification task. Graph convolutional networks can efficiently process labeled and unlabeled data via a semi-supervised fashion. To further strengthen the model classification performance, we propose a data augmented graph convolutional network (DAGCN) method. First, we use an efficient graph convolutional network to collect and extract spectral-spatial data. Then, we utilize spatial sample random reset (SSRR) method to extend spectral-spatial data with better use of abundant spatial information. Finally, we adopt the broad learning network to strengthen the width expansion of the data. Experiments prove that DAGCN outperforms the contrast methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Adaptable Convolutional Network for Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Haut, Juan M.
    REMOTE SENSING, 2021, 13 (18)
  • [42] Hypergraph convolutional network for hyperspectral image classification
    Qin Xu
    Jing Lin
    Bo Jiang
    Jinpei Liu
    Bin Luo
    Neural Computing and Applications, 2023, 35 : 21863 - 21882
  • [43] dSPG: A New Discriminant Superpixel Graph Regularizer and Convolutional Network for Hyperspectral Image Classification
    Yu, Long
    Li, Jun
    He, Lin
    Plaza, Antonio
    Wang, Lizhe
    Tang, Zhonghui
    Zhuo, Li
    Yuan, Yuchen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [44] Multiscale Feature Search-Based Graph Convolutional Network for Hyperspectral Image Classification
    Wu, Ke
    Zhan, Yanting
    An, Ying
    Li, Suyi
    REMOTE SENSING, 2024, 16 (13)
  • [45] Feature-guided dynamic graph convolutional network for wetland hyperspectral image classification
    Li, Zhongwei
    Meng, Qiao
    Guo, Fangming
    Wang, Leiquan
    Huang, Wenhao
    Hu, Yabin
    Liang, Jian
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 123
  • [46] Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification
    Liu, Jie
    Guan, Renxiang
    Li, Zihao
    Zhang, Jiaxuan
    Hu, Yaowen
    Wang, Xueyong
    REMOTE SENSING, 2023, 15 (23)
  • [47] Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Guanghui, Li
    Dai, Chenglong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Guanghui, Li
    Dai, Chenglong
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [49] Hyperspectral image classification based on mixed similarity graph convolutional network and pixel refinement
    Shang, Ronghua
    Zhu, Keyao
    Chang, Huidong
    Zhang, Weitong
    Feng, Jie
    Xu, Songhua
    APPLIED SOFT COMPUTING, 2025, 170
  • [50] GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL DATA CLASSIFICATION
    Shahraki, Farideh Foroozandeh
    Prasad, Saurabh
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 968 - 972