Hyperspectral image classification based on mixed similarity graph convolutional network and pixel refinement

被引:0
|
作者
Shang, Ronghua [1 ]
Zhu, Keyao [1 ]
Chang, Huidong [1 ]
Zhang, Weitong [1 ]
Feng, Jie [1 ]
Xu, Songhua [2 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Shaanxi Provinc, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Hlth Management & Inst Med Artificial Intelli, Affiliated Hosp 2, Xian 710004, Shaanxi Provinc, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hyperspectral image classification; Mixed similarity; Conditional random fields; Graph convolutional networks; Superpixel; OF-THE-ART;
D O I
10.1016/j.asoc.2024.112657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The traditional convolutional neural network cannot extract Non-Euclidean spatial information in hyperspectral image classification, while the superpixel-based graph convolutional network relies on node aggregation and superpixel segmentation accuracy. To solve these problems, a mixed similarity graph convolutional network and pixel refinement method (MSGCN-CRF) is proposed in this paper. Firstly, homogeneous superpixel-level features are obtained as nodes using a superpixel segmentation algorithm, and then a mixed similarity method is designed to aggregate nodes. This method combines spectral intensity similarity and spectral curve similarity to obtain more discriminant node features. Secondly, a two-layer convolutional layer is used to remove noise from the original hyperspectral image. Then node features are constructed and input into the two-layer graph convolutional network, which using the adjacency matrix generated by mixed similarity to guide superpixel node aggregation. Finally, pixel refinement is implemented by fully connect CRF, which is used to correct the false prediction caused by the segmentation error of superpixels, and to obtain more accurate classification results using spatial and spectral information between pixels. Experimental results with a small amount of training samples on three different datasets show that the proposed MSGCN-CRF can obtain better classification results than the seven state-of-the-art classification methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Graph-in-Graph Convolutional Network for Hyperspectral Image Classification
    Jia S.
    Jiang S.
    Zhang S.
    Xu M.
    Jia X.
    IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (01) : 1157 - 1171
  • [2] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [3] Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network
    Bai, Jing
    Ding, Bixiu
    Xiao, Zhu
    Jiao, Licheng
    Chen, Hongyang
    Regan, Amelia C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network
    Kong, Yi
    Ji, Dingzhe
    Cheng, Yuhu
    Wang, Xuesong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (04) : 1426 - 1434
  • [5] Semisupervised Classification of Hyperspectral Image Based on Graph Convolutional Broad Network
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2995 - 3005
  • [6] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [8] Fuzzy graph convolutional network for hyperspectral image classification
    Xu, Jindong
    Li, Kang
    Li, Ziyi
    Chong, Qianpeng
    Xing, Haihua
    Xing, Qianguo
    Ni, Mengying
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [9] Robust dense graph structure based on graph convolutional network for hyperspectral image classification
    Li, Jun
    Wu, Baohang
    Fu, Wenwen
    Zheng, Wenjing
    Lin, Fei
    Li, Mingming
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (03)
  • [10] Spatial Pooling Graph Convolutional Network for Hyperspectral Image Classification
    Zhang, Xiangrong
    Chen, Shutong
    Zhu, Peng
    Tang, Xu
    Feng, Jie
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60