Estimating Trans-Ancestry Genetic Correlation with Unbalanced Data Resources

被引:0
|
作者
Zhao, Bingxin [1 ]
Yang, Xiaochen [2 ]
Zhu, Hongtu [3 ]
机构
[1] Univ Penn, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN USA
[3] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USA
基金
美国国家卫生研究院;
关键词
Data heterogeneity; GWAS; High-dimensional prediction; Trans-ancestry genetic correlation; UK Biobank; SCORE REGRESSION; COVARIANCE; PREDICTION; DISEASES; TRAITS;
D O I
10.1080/01621459.2024.2344703
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to propose a novel method for estimating trans-ancestry genetic correlations in genome-wide association studies (GWAS) using genetically predicted observations. These correlations describe how genetic architecture of complex traits varies among populations. Our new estimator corrects for biases arising from prediction errors in high-dimensional weak GWAS signals, while addressing the ethnic diversity inherent in GWAS data, such as linkage disequilibrium (LD) differences. A distinguishing feature of our approach is its flexibility regarding sample sizes: it necessitates a large GWAS sample only from one population, while the secondary population may have a much smaller cohort, even in the hundreds. This design directly addresses the existing imbalance in GWAS data resources, where datasets for European populations typically outnumber those of non-European ancestries. Through extensive simulations and real data analysis from the UK Biobank study encompassing 26 complex traits, we validate the reliability of our method. Our results illuminate the broader implications of transferring genetic findings across diverse populations. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 50 条
  • [41] Leveraging trans-ancestry polygenic risk scores and machine learning to improve precision psychiatry for bipolar disorder
    Feuer, Kyra
    Kember, Rachel
    BIPOLAR DISORDERS, 2024, 26 : 91 - 91
  • [42] Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
    Kato, Norihiro
    Loh, Marie
    Takeuchi, Fumihiko
    Verweij, Niek
    Wang, Xu
    Zhang, Weihua
    Kelly, Tanika N.
    Saleheen, Danish
    Lehne, Benjamin
    Leach, Irene Mateo
    Drong, Alexander W.
    Abbott, James
    Wahl, Simone
    Tan, Sian-Tsung
    Scott, William R.
    Campanella, Gianluca
    Chadeau-Hyam, Marc
    Afzal, Uzma
    Ahluwalia, Tarunveer S.
    Bonder, Marc Jan
    Chen, Peng
    Dehghan, Abbas
    Edwards, Todd L.
    Esko, Tonu
    Go, Min Jin
    Harris, Sarah E.
    Hartiala, Jaana
    Kasela, Silva
    Kasturiratne, Anuradhani
    Khor, Chiea-Chuen
    Kleber, Marcus E.
    Li, Huaixing
    Mok, Zuan Yu
    Nakatochi, Masahiro
    Sapari, Nur Sabrina
    Saxena, Richa
    Stewart, Alexandre F. R.
    Stolk, Lisette
    Tabara, Yasuharu
    Teh, Ai Ling
    Wu, Ying
    Wu, Jer-Yuarn
    Zhang, Yi
    Aits, Imke
    Alves, Alexessander Da Silva Couto
    Das, Shikta
    Dorajoo, Rajkumar
    Hopewell, Jemma C.
    Kim, Yun Kyoung
    Koivula, Robert W.
    NATURE GENETICS, 2015, 47 (11) : 1282 - +
  • [43] Integrated analysis of racial disparities in genomic architecture identifies a trans-ancestry prognostic subtype in bladder cancer
    Zhang, Baifeng
    Jia, Peilin
    Wang, Jiayin
    Pei, Guangsheng
    Wang, Changxi
    Pei, Shimei
    Li, Xiangchun
    Zhao, Zhongming
    Yi, Xin
    Guan, Xin-yuan
    Huang, Yi
    MOLECULAR ONCOLOGY, 2023, 17 (04) : 564 - 581
  • [44] Estimating Genetic Ancestry Proportions from Faces
    Klimentidis, Yann C.
    Shriver, Mark D.
    PLOS ONE, 2009, 4 (02):
  • [45] Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
    Surendran, Praveen
    Drenos, Fotios
    Young, Robin
    Warren, Helen
    Cook, James P.
    Manning, Alisa K.
    Grarup, Niels
    Sim, Xueling
    Barnes, Daniel R.
    Witkowska, Kate
    Staley, James R.
    Tragante, Vinicius
    Tukiainen, Taru
    Yaghootkar, Hanieh
    Masca, Nicholas
    Freitag, Daniel F.
    Ferreira, Teresa
    Giannakopoulou, Olga
    Tinker, Andrew
    Harakalova, Magdalena
    Mihailov, Evelin
    Liu, Chunyu
    Kraja, Aldi T.
    Nielsen, Sune Fallgaard
    Rasheed, Asif
    Samue, Maria
    Zhao, Wei
    Bonnycastle, Lori L.
    Jackson, Anne U.
    Narisu, Narisu
    Swift, Amy J.
    Southam, Lorraine
    Marten, Jonathan
    Huyghe, Jeroen R.
    Stancakova, Alena
    Fava, Cristiano
    Ohlsson, Therese
    Matchan, Angela
    Stirrups, Kathleen E.
    Bork-Jensen, Jette
    Gjesing, Anette P.
    Kontto, Jukka
    Perola, Markus
    Shaw-Hawkins, Susan
    Havulinna, Aki S.
    Zhang, He
    Donnelly, Louise A.
    Groves, Christopher J.
    Rayner, N. William
    Neville, Matt J.
    NATURE GENETICS, 2016, 48 (10) : 1151 - 1161
  • [46] Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
    Conti, David, V
    Darst, Burcu F.
    Moss, Lilit C.
    Saunders, Edward J.
    Sheng, Xin
    Chou, Alisha
    Schumacher, Fredrick R.
    Al Olama, Ali Amin
    Benlloch, Sara
    Dadaev, Tokhir
    Brook, Mark N.
    Sahimi, Ali
    Hoffmann, Thomas J.
    Takahashi, Atushi
    Matsuda, Koichi
    Momozawa, Yukihide
    Fujita, Masashi
    Muir, Kenneth
    Lophatananon, Artitaya
    Wan, Peggy
    Le Marchand, Loic
    Wilkens, Lynne R.
    Stevens, Victoria L.
    Gapstur, Susan M.
    Carter, Brian D.
    Schleutker, Johanna
    Tammela, Teuvo L. J.
    Sipeky, Csilla
    Auvinen, Anssi
    Giles, Graham G.
    Southey, Melissa C.
    MacInnis, Robert J.
    Cybulski, Cezary
    Wokolorczyk, Dominika
    Lubinski, Jan
    Neal, David E.
    Donovan, Jenny L.
    Hamdy, Freddie C.
    Martin, Richard M.
    Nordestgaard, Borge G.
    Nielsen, Sune F.
    Weischer, Maren
    Bojesen, Stig E.
    Roder, Martin Andreas
    Iversen, Peter
    Batra, Jyotsna
    Chambers, Suzanne
    Moya, Leire
    Horvath, Lisa
    Clements, Judith A.
    NATURE GENETICS, 2021, 53 (01) : 11 - 15
  • [47] Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use
    Fang, Fang
    Quach, Bryan
    Lawrence, Kaitlyn G.
    van Dongen, Jenny
    Marks, Jesse A.
    Lundgren, Sara
    Lin, Mingkuan
    Odintsova, Veronika V.
    Costeira, Ricardo
    Xu, Zongli
    Zhou, Linran
    Mandal, Meisha
    Xia, Yujing
    Vink, Jacqueline M.
    Bierut, Laura J.
    Ollikainen, Miina
    Taylor, Jack A.
    Bell, Jordana T.
    Kaprio, Jaakko
    Boomsma, Dorret I.
    Xu, Ke
    Sandler, Dale P.
    Hancock, Dana B.
    Johnson, Eric O.
    MOLECULAR PSYCHIATRY, 2024, 29 (01) : 124 - 133
  • [48] Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
    David V. Conti
    Burcu F. Darst
    Lilit C. Moss
    Edward J. Saunders
    Xin Sheng
    Alisha Chou
    Fredrick R. Schumacher
    Ali Amin Al Olama
    Sara Benlloch
    Tokhir Dadaev
    Mark N. Brook
    Ali Sahimi
    Thomas J. Hoffmann
    Atushi Takahashi
    Koichi Matsuda
    Yukihide Momozawa
    Masashi Fujita
    Kenneth Muir
    Artitaya Lophatananon
    Peggy Wan
    Loic Le Marchand
    Lynne R. Wilkens
    Victoria L. Stevens
    Susan M. Gapstur
    Brian D. Carter
    Johanna Schleutker
    Teuvo L. J. Tammela
    Csilla Sipeky
    Anssi Auvinen
    Graham G. Giles
    Melissa C. Southey
    Robert J. MacInnis
    Cezary Cybulski
    Dominika Wokołorczyk
    Jan Lubiński
    David E. Neal
    Jenny L. Donovan
    Freddie C. Hamdy
    Richard M. Martin
    Børge G. Nordestgaard
    Sune F. Nielsen
    Maren Weischer
    Stig E. Bojesen
    Martin Andreas Røder
    Peter Iversen
    Jyotsna Batra
    Suzanne Chambers
    Leire Moya
    Lisa Horvath
    Judith A. Clements
    Nature Genetics, 2021, 53 : 65 - 75
  • [49] No genetic causal links detected between antihypertensive medications and skin cancer: insights from a trans-ancestry, drug-target mendelian randomization analysis
    Xu, Xiao
    Huang, Yan-Hai
    Huang, Yan
    Chen, Hong-Hui
    Mao, Fei-Fei
    Ntawuyamara, Epipode
    Zhang, Lei
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 2025, 317 (01)
  • [50] Trans-ancestry polygenic models for the prediction of LDL blood levels: an analysis of the United Kingdom Biobank and Taiwan Biobank
    Hassanin, Emadeldin
    Lee, Ko-Han
    Hsieh, Tzung-Chien
    Aldisi, Rana
    Lee, Yi-Lun
    Bobbili, Dheeraj
    Krawitz, Peter
    May, Patrick
    Chen, Chien-Yu
    Maj, Carlo
    FRONTIERS IN GENETICS, 2023, 14