Estimating Trans-Ancestry Genetic Correlation with Unbalanced Data Resources

被引:0
|
作者
Zhao, Bingxin [1 ]
Yang, Xiaochen [2 ]
Zhu, Hongtu [3 ]
机构
[1] Univ Penn, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN USA
[3] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USA
基金
美国国家卫生研究院;
关键词
Data heterogeneity; GWAS; High-dimensional prediction; Trans-ancestry genetic correlation; UK Biobank; SCORE REGRESSION; COVARIANCE; PREDICTION; DISEASES; TRAITS;
D O I
10.1080/01621459.2024.2344703
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to propose a novel method for estimating trans-ancestry genetic correlations in genome-wide association studies (GWAS) using genetically predicted observations. These correlations describe how genetic architecture of complex traits varies among populations. Our new estimator corrects for biases arising from prediction errors in high-dimensional weak GWAS signals, while addressing the ethnic diversity inherent in GWAS data, such as linkage disequilibrium (LD) differences. A distinguishing feature of our approach is its flexibility regarding sample sizes: it necessitates a large GWAS sample only from one population, while the secondary population may have a much smaller cohort, even in the hundreds. This design directly addresses the existing imbalance in GWAS data resources, where datasets for European populations typically outnumber those of non-European ancestries. Through extensive simulations and real data analysis from the UK Biobank study encompassing 26 complex traits, we validate the reliability of our method. Our results illuminate the broader implications of transferring genetic findings across diverse populations. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 50 条
  • [31] SEROLOGICAL DIFFERENCES IN AN INFLAMMATORY BOWEL DISEASE (IBD) TRANS-ANCESTRY COHORT HIGHLIGHTING POPULATION HETEROGENEITY
    Dube, Shishir
    Li, Dalin
    Haritunians, Talin
    Yang, Shaohong
    Braun, Jonathan G.
    Debbas, Philip
    Dutra-Clarke, Rhiannon
    Targan, Stephan
    Ahmad, Tariq
    Venkateswaran, Suresh
    Kugathasan, Subra
    Beecham, Ashley H.
    Gomez, Lissette
    Quintero, Maria
    Leavitt, James S.
    Deshpande, Amar R.
    Kerman, David H.
    Proksell, Siobhan
    McCauley, Jacob L.
    Damas, Oriana M.
    Abreu, Maria T.
    Torres, Esther A.
    Yang, Suk-Kyun
    Song, Kyuyoung
    Hwang, Sung W.
    Park, Sang Hyoung
    Lee, Ho-Su
    Ye, Byong Duk
    Mcgovern, Dermot P. B.
    GASTROENTEROLOGY, 2023, 164 (06) : S254 - S254
  • [32] Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations
    Tian Ge
    Marguerite R. Irvin
    Amit Patki
    Vinodh Srinivasasainagendra
    Yen-Feng Lin
    Hemant K. Tiwari
    Nicole D. Armstrong
    Barbara Benoit
    Chia-Yen Chen
    Karmel W. Choi
    James J. Cimino
    Brittney H. Davis
    Ozan Dikilitas
    Bethany Etheridge
    Yen-Chen Anne Feng
    Vivian Gainer
    Hailiang Huang
    Gail P. Jarvik
    Christopher Kachulis
    Eimear E. Kenny
    Atlas Khan
    Krzysztof Kiryluk
    Leah Kottyan
    Iftikhar J. Kullo
    Christoph Lange
    Niall Lennon
    Aaron Leong
    Edyta Malolepsza
    Ayme D. Miles
    Shawn Murphy
    Bahram Namjou
    Renuka Narayan
    Mark J. O’Connor
    Jennifer A. Pacheco
    Emma Perez
    Laura J. Rasmussen-Torvik
    Elisabeth A. Rosenthal
    Daniel Schaid
    Maria Stamou
    Miriam S. Udler
    Wei-Qi Wei
    Scott T. Weiss
    Maggie C. Y. Ng
    Jordan W. Smoller
    Matthew S. Lebo
    James B. Meigs
    Nita A. Limdi
    Elizabeth W. Karlson
    Genome Medicine, 14
  • [33] Association of antihypertensive drugs with psoriasis: A trans-ancestry and drug-target Mendelian randomization study
    Xu, Xiao
    Wang, Shu-yun
    Wang, Rongyun
    Wu, Lin-yun
    Yan, Min
    Sun, Zhi-ling
    Sun, Qiu-hua
    VASCULAR PHARMACOLOGY, 2024, 154
  • [34] Causal relationships of circulating amino acids with cardiovascular disease: a trans-ancestry Mendelian randomization analysis
    Song Hu
    Zhennan Lin
    Meng-Jin Hu
    Jiang-Shan Tan
    Ting-Ting Guo
    Xin Huang
    Lu Hua
    Journal of Translational Medicine, 21
  • [35] TRANS-ANCESTRY GWAS META-ANALYSIS OF ALCOHOL AND TOBACCO ADDICTION IN 3.4 MILLION INDIVIDUALS
    Vrieze, S.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2022, 46 : 29A - 29A
  • [36] Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease
    Satoshi Koyama
    Kaoru Ito
    Chikashi Terao
    Masato Akiyama
    Momoko Horikoshi
    Yukihide Momozawa
    Hiroshi Matsunaga
    Hirotaka Ieki
    Kouichi Ozaki
    Yoshihiro Onouchi
    Atsushi Takahashi
    Seitaro Nomura
    Hiroyuki Morita
    Hiroshi Akazawa
    Changhoon Kim
    Jeong-sun Seo
    Koichiro Higasa
    Motoki Iwasaki
    Taiki Yamaji
    Norie Sawada
    Shoichiro Tsugane
    Teruhide Koyama
    Hiroaki Ikezaki
    Naoyuki Takashima
    Keitaro Tanaka
    Kokichi Arisawa
    Kiyonori Kuriki
    Mariko Naito
    Kenji Wakai
    Shinichiro Suna
    Yasuhiko Sakata
    Hiroshi Sato
    Masatsugu Hori
    Yasushi Sakata
    Koichi Matsuda
    Yoshinori Murakami
    Hiroyuki Aburatani
    Michiaki Kubo
    Fumihiko Matsuda
    Yoichiro Kamatani
    Issei Komuro
    Nature Genetics, 2020, 52 : 1169 - 1177
  • [37] Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease
    Koyama, Satoshi
    Ito, Kaoru
    Terao, Chikashi
    Akiyama, Masato
    Horikoshi, Momoko
    Momozawa, Yukihide
    Matsunaga, Hiroshi
    Ieki, Hirotaka
    Ozaki, Kouichi
    Onouchi, Yoshihiro
    Takahashi, Atsushi
    Nomura, Seitaro
    Morita, Hiroyuki
    Akazawa, Hiroshi
    Kim, Changhoon
    Seo, Jeong-sun
    Higasa, Koichiro
    Iwasaki, Motoki
    Yamaji, Taiki
    Sawada, Norie
    Tsugane, Shoichiro
    Koyama, Teruhide
    Ikezaki, Hiroaki
    Takashima, Naoyuki
    Tanaka, Keitaro
    Arisawa, Kokichi
    Kuriki, Kiyonori
    Naito, Mariko
    Wakai, Kenji
    Suna, Shinichiro
    Sakata, Yasuhiko
    Sato, Hiroshi
    Hori, Masatsugu
    Sakata, Yasushi
    Matsuda, Koichi
    Murakami, Yoshinori
    Aburatani, Hiroyuki
    Kubo, Michiaki
    Matsuda, Fumihiko
    Kamatani, Yoichiro
    Komuro, Issei
    NATURE GENETICS, 2020, 52 (11) : 1169 - +
  • [38] TRANS-ANCESTRY GENOME WIDE ASSOCIATION STUDY OF EXECUTIVE FUNCTIONS IN UP TO 14,877 SUBJECTS
    Arnatkeviciute, Aurina
    Lemire, Mathieu
    Morrison, Claire
    Mooney, Michael
    Nigg, Joel
    Friedman, Naomi
    Crosbie, Jennifer
    Burton, Christie
    Schachar, Russell
    Bellgrove, Mark
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2021, 51 : E215 - E215
  • [39] Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
    Norihiro Kato
    Marie Loh
    Fumihiko Takeuchi
    Niek Verweij
    Xu Wang
    Weihua Zhang
    Tanika N Kelly
    Danish Saleheen
    Benjamin Lehne
    Irene Mateo Leach
    Alexander W Drong
    James Abbott
    Simone Wahl
    Sian-Tsung Tan
    William R Scott
    Gianluca Campanella
    Marc Chadeau-Hyam
    Uzma Afzal
    Tarunveer S Ahluwalia
    Marc Jan Bonder
    Peng Chen
    Abbas Dehghan
    Todd L Edwards
    Tõnu Esko
    Min Jin Go
    Sarah E Harris
    Jaana Hartiala
    Silva Kasela
    Anuradhani Kasturiratne
    Chiea-Chuen Khor
    Marcus E Kleber
    Huaixing Li
    Zuan Yu Mok
    Masahiro Nakatochi
    Nur Sabrina Sapari
    Richa Saxena
    Alexandre F R Stewart
    Lisette Stolk
    Yasuharu Tabara
    Ai Ling Teh
    Ying Wu
    Jer-Yuarn Wu
    Yi Zhang
    Imke Aits
    Alexessander Da Silva Couto Alves
    Shikta Das
    Rajkumar Dorajoo
    Jemma C Hopewell
    Yun Kyoung Kim
    Robert W Koivula
    Nature Genetics, 2015, 47 : 1282 - 1293
  • [40] Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
    Praveen Surendran
    Fotios Drenos
    Robin Young
    Helen Warren
    James P Cook
    Alisa K Manning
    Niels Grarup
    Xueling Sim
    Daniel R Barnes
    Kate Witkowska
    James R Staley
    Vinicius Tragante
    Taru Tukiainen
    Hanieh Yaghootkar
    Nicholas Masca
    Daniel F Freitag
    Teresa Ferreira
    Olga Giannakopoulou
    Andrew Tinker
    Magdalena Harakalova
    Evelin Mihailov
    Chunyu Liu
    Aldi T Kraja
    Sune Fallgaard Nielsen
    Asif Rasheed
    Maria Samuel
    Wei Zhao
    Lori L Bonnycastle
    Anne U Jackson
    Narisu Narisu
    Amy J Swift
    Lorraine Southam
    Jonathan Marten
    Jeroen R Huyghe
    Alena Stančáková
    Cristiano Fava
    Therese Ohlsson
    Angela Matchan
    Kathleen E Stirrups
    Jette Bork-Jensen
    Anette P Gjesing
    Jukka Kontto
    Markus Perola
    Susan Shaw-Hawkins
    Aki S Havulinna
    He Zhang
    Louise A Donnelly
    Christopher J Groves
    N William Rayner
    Matt J Neville
    Nature Genetics, 2016, 48 : 1151 - 1161